HepLean Documentation

Mathlib.Algebra.Group.Pointwise.Set.Card

Cardinalities of pointwise operations on sets #

theorem Cardinal.mk_mul_le {M : Type u_2} [Mul M] {s t : Set M} :
theorem Cardinal.mk_add_le {M : Type u_2} [Add M] {s t : Set M} :
theorem Set.natCard_mul_le {M : Type u_2} [Mul M] {s t : Set M} [IsCancelMul M] :
Nat.card (s * t) Nat.card s * Nat.card t
theorem Set.natCard_add_le {M : Type u_2} [Add M] {s t : Set M} [IsCancelAdd M] :
Nat.card (s + t) Nat.card s * Nat.card t
@[deprecated Set.natCard_mul_le]
theorem Set.card_mul_le {M : Type u_2} [Mul M] {s t : Set M} [IsCancelMul M] :
Nat.card (s * t) Nat.card s * Nat.card t

Alias of Set.natCard_mul_le.

@[deprecated Set.natCard_add_le]
theorem Set.card_add_le {M : Type u_2} [Add M] {s t : Set M} [IsCancelAdd M] :
Nat.card (s + t) Nat.card s * Nat.card t
@[simp]
theorem Cardinal.mk_inv {G : Type u_1} [InvolutiveInv G] (s : Set G) :
@[simp]
theorem Cardinal.mk_neg {G : Type u_1} [InvolutiveNeg G] (s : Set G) :
@[simp]
theorem Set.natCard_inv {G : Type u_1} [InvolutiveInv G] (s : Set G) :
@[simp]
theorem Set.natCard_neg {G : Type u_1} [InvolutiveNeg G] (s : Set G) :
Nat.card (-s) = Nat.card s
@[deprecated Set.natCard_inv]
theorem Set.card_inv {G : Type u_1} [InvolutiveInv G] (s : Set G) :

Alias of Set.natCard_inv.

@[deprecated Set.natCard_neg]
theorem Set.card_neg {G : Type u_1} [InvolutiveNeg G] (s : Set G) :
Nat.card (-s) = Nat.card s
@[simp]
theorem Set.encard_inv {G : Type u_1} [InvolutiveInv G] (s : Set G) :
s⁻¹.encard = s.encard
@[simp]
theorem Set.encard_neg {G : Type u_1} [InvolutiveNeg G] (s : Set G) :
(-s).encard = s.encard
@[simp]
theorem Set.ncard_inv {G : Type u_1} [InvolutiveInv G] (s : Set G) :
s⁻¹.ncard = s.ncard
@[simp]
theorem Set.ncard_neg {G : Type u_1} [InvolutiveNeg G] (s : Set G) :
(-s).ncard = s.ncard
theorem Cardinal.mk_div_le {M : Type u_2} [DivInvMonoid M] {s t : Set M} :
theorem Cardinal.mk_sub_le {M : Type u_2} [SubNegMonoid M] {s t : Set M} :
theorem Set.natCard_div_le {G : Type u_1} [Group G] {s t : Set G} :
Nat.card (s / t) Nat.card s * Nat.card t
theorem Set.natCard_sub_le {G : Type u_1} [AddGroup G] {s t : Set G} :
Nat.card (s - t) Nat.card s * Nat.card t
@[deprecated Set.natCard_div_le]
theorem Set.card_div_le {G : Type u_1} [Group G] {s t : Set G} :
Nat.card (s / t) Nat.card s * Nat.card t

Alias of Set.natCard_div_le.

@[deprecated Set.natCard_sub_le]
theorem Set.card_sub_le {G : Type u_1} [AddGroup G] {s t : Set G} :
Nat.card (s - t) Nat.card s * Nat.card t
@[simp]
theorem Cardinal.mk_smul_set {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] (a : G) (s : Set α) :
@[simp]
theorem Cardinal.mk_vadd_set {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] (a : G) (s : Set α) :
@[simp]
theorem Set.natCard_smul_set {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] (a : G) (s : Set α) :
Nat.card (a s) = Nat.card s
@[simp]
theorem Set.natCard_vadd_set {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] (a : G) (s : Set α) :
Nat.card (a +ᵥ s) = Nat.card s
@[deprecated Cardinal.mk_smul_set]
theorem Set.card_smul_set {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] (a : G) (s : Set α) :

Alias of Cardinal.mk_smul_set.

@[deprecated Cardinal.mk_vadd_set]
theorem Set.card_vadd_set {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] (a : G) (s : Set α) :
@[simp]
theorem Set.encard_smul_set {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] (a : G) (s : Set α) :
(a s).encard = s.encard
@[simp]
theorem Set.encard_vadd_set {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] (a : G) (s : Set α) :
(a +ᵥ s).encard = s.encard
@[simp]
theorem Set.ncard_smul_set {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] (a : G) (s : Set α) :
(a s).ncard = s.ncard
@[simp]
theorem Set.ncard_vadd_set {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] (a : G) (s : Set α) :
(a +ᵥ s).ncard = s.ncard