Basic properties of the manifold Fréchet derivative #
In this file, we show various properties of the manifold Fréchet derivative, mimicking the API for Fréchet derivatives.
- basic properties of unique differentiability sets
- various general lemmas about the manifold Fréchet derivative
- deducing differentiability from smoothness,
- deriving continuity from differentiability on manifolds,
- congruence lemmas for derivatives on manifolds
- composition lemmas and the chain rule
Unique differentiability sets in manifolds #
theorem
uniqueMDiffWithinAt_univ
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
(I : ModelWithCorners 𝕜 E H)
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{x : M}
:
UniqueMDiffWithinAt I Set.univ x
theorem
uniqueMDiffWithinAt_iff
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{s : Set M}
{x : M}
:
UniqueMDiffWithinAt I s x ↔ UniqueDiffWithinAt 𝕜 (↑(extChartAt I x).symm ⁻¹' s ∩ (extChartAt I x).target) (↑(extChartAt I x) x)
theorem
UniqueMDiffWithinAt.mono_nhds
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{s : Set M}
{t : Set M}
{x : M}
(hs : UniqueMDiffWithinAt I s x)
(ht : nhdsWithin x s ≤ nhdsWithin x t)
:
UniqueMDiffWithinAt I t x
theorem
UniqueMDiffWithinAt.mono_of_mem
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{s : Set M}
{t : Set M}
{x : M}
(hs : UniqueMDiffWithinAt I s x)
(ht : t ∈ nhdsWithin x s)
:
UniqueMDiffWithinAt I t x
theorem
UniqueMDiffWithinAt.mono
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{x : M}
{s : Set M}
{t : Set M}
(h : UniqueMDiffWithinAt I s x)
(st : s ⊆ t)
:
UniqueMDiffWithinAt I t x
theorem
UniqueMDiffWithinAt.inter'
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{x : M}
{s : Set M}
{t : Set M}
(hs : UniqueMDiffWithinAt I s x)
(ht : t ∈ nhdsWithin x s)
:
UniqueMDiffWithinAt I (s ∩ t) x
theorem
UniqueMDiffWithinAt.inter
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{x : M}
{s : Set M}
{t : Set M}
(hs : UniqueMDiffWithinAt I s x)
(ht : t ∈ nhds x)
:
UniqueMDiffWithinAt I (s ∩ t) x
theorem
IsOpen.uniqueMDiffWithinAt
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{x : M}
{s : Set M}
(hs : IsOpen s)
(xs : x ∈ s)
:
UniqueMDiffWithinAt I s x
theorem
UniqueMDiffOn.inter
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{s : Set M}
{t : Set M}
(hs : UniqueMDiffOn I s)
(ht : IsOpen t)
:
UniqueMDiffOn I (s ∩ t)
theorem
IsOpen.uniqueMDiffOn
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{s : Set M}
(hs : IsOpen s)
:
UniqueMDiffOn I s
theorem
uniqueMDiffOn_univ
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
:
UniqueMDiffOn I Set.univ
theorem
UniqueMDiffWithinAt.prod
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{x : M}
{y : M'}
{s : Set M}
{t : Set M'}
(hs : UniqueMDiffWithinAt I s x)
(ht : UniqueMDiffWithinAt I' t y)
:
UniqueMDiffWithinAt (I.prod I') (s ×ˢ t) (x, y)
theorem
UniqueMDiffOn.prod
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{s : Set M}
{t : Set M'}
(hs : UniqueMDiffOn I s)
(ht : UniqueMDiffOn I' t)
:
UniqueMDiffOn (I.prod I') (s ×ˢ t)
theorem
mdifferentiableWithinAt_iff
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{s : Set M}
{x : M}
:
MDifferentiableWithinAt I I' f s x ↔ ContinuousWithinAt f s x ∧ DifferentiableWithinAt 𝕜 (writtenInExtChartAt I I' x f) ((extChartAt I x).target ∩ ↑(extChartAt I x).symm ⁻¹' s)
(↑(extChartAt I x) x)
theorem
MDifferentiableWithinAt.mono
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
{t : Set M}
(hst : s ⊆ t)
(h : MDifferentiableWithinAt I I' f t x)
:
MDifferentiableWithinAt I I' f s x
theorem
mdifferentiableWithinAt_univ
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
:
MDifferentiableWithinAt I I' f Set.univ x ↔ MDifferentiableAt I I' f x
theorem
mdifferentiableWithinAt_inter
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
{t : Set M}
(ht : t ∈ nhds x)
:
MDifferentiableWithinAt I I' f (s ∩ t) x ↔ MDifferentiableWithinAt I I' f s x
theorem
mdifferentiableWithinAt_inter'
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
{t : Set M}
(ht : t ∈ nhdsWithin x s)
:
MDifferentiableWithinAt I I' f (s ∩ t) x ↔ MDifferentiableWithinAt I I' f s x
theorem
MDifferentiableAt.mdifferentiableWithinAt
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
(h : MDifferentiableAt I I' f x)
:
MDifferentiableWithinAt I I' f s x
theorem
MDifferentiableWithinAt.mdifferentiableAt
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
(h : MDifferentiableWithinAt I I' f s x)
(hs : s ∈ nhds x)
:
MDifferentiableAt I I' f x
theorem
MDifferentiableOn.mono
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{s : Set M}
{t : Set M}
(h : MDifferentiableOn I I' f t)
(st : s ⊆ t)
:
MDifferentiableOn I I' f s
theorem
mdifferentiableOn_univ
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
:
MDifferentiableOn I I' f Set.univ ↔ MDifferentiable I I' f
theorem
MDifferentiableOn.mdifferentiableAt
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
(h : MDifferentiableOn I I' f s)
(hx : s ∈ nhds x)
:
MDifferentiableAt I I' f x
theorem
MDifferentiable.mdifferentiableOn
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{s : Set M}
(h : MDifferentiable I I' f)
:
MDifferentiableOn I I' f s
theorem
mdifferentiableOn_of_locally_mdifferentiableOn
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{s : Set M}
(h : ∀ x ∈ s, ∃ (u : Set M), IsOpen u ∧ x ∈ u ∧ MDifferentiableOn I I' f (s ∩ u))
:
MDifferentiableOn I I' f s
Deducing differentiability from smoothness #
theorem
ContMDiffWithinAt.mdifferentiableWithinAt
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
{n : ℕ∞}
(hf : ContMDiffWithinAt I I' n f s x)
(hn : 1 ≤ n)
:
MDifferentiableWithinAt I I' f s x
theorem
ContMDiffAt.mdifferentiableAt
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{n : ℕ∞}
(hf : ContMDiffAt I I' n f x)
(hn : 1 ≤ n)
:
MDifferentiableAt I I' f x
theorem
ContMDiffOn.mdifferentiableOn
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{s : Set M}
{n : ℕ∞}
(hf : ContMDiffOn I I' n f s)
(hn : 1 ≤ n)
:
MDifferentiableOn I I' f s
theorem
SmoothWithinAt.mdifferentiableWithinAt
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
(hf : SmoothWithinAt I I' f s x)
:
MDifferentiableWithinAt I I' f s x
theorem
ContMDiff.mdifferentiable
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{n : ℕ∞}
(hf : ContMDiff I I' n f)
(hn : 1 ≤ n)
:
MDifferentiable I I' f
theorem
SmoothAt.mdifferentiableAt
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
(hf : SmoothAt I I' f x)
:
MDifferentiableAt I I' f x
theorem
SmoothOn.mdifferentiableOn
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{s : Set M}
(hf : SmoothOn I I' f s)
:
MDifferentiableOn I I' f s
theorem
Smooth.mdifferentiable
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
(hf : Smooth I I' f)
:
MDifferentiable I I' f
theorem
Smooth.mdifferentiableAt
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
(hf : Smooth I I' f)
:
MDifferentiableAt I I' f x
theorem
MDifferentiableOn.continuousOn
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{s : Set M}
(h : MDifferentiableOn I I' f s)
:
ContinuousOn f s
theorem
MDifferentiable.continuous
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
(h : MDifferentiable I I' f)
:
theorem
Smooth.mdifferentiableWithinAt
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
(hf : Smooth I I' f)
:
MDifferentiableWithinAt I I' f s x
Deriving continuity from differentiability on manifolds #
theorem
MDifferentiableWithinAt.prod_mk
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{E'' : Type u_8}
[NormedAddCommGroup E'']
[NormedSpace 𝕜 E'']
{H'' : Type u_9}
[TopologicalSpace H'']
{I'' : ModelWithCorners 𝕜 E'' H''}
{M'' : Type u_10}
[TopologicalSpace M'']
[ChartedSpace H'' M'']
{x : M}
{s : Set M}
{f : M → M'}
{g : M → M''}
(hf : MDifferentiableWithinAt I I' f s x)
(hg : MDifferentiableWithinAt I I'' g s x)
:
MDifferentiableWithinAt I (I'.prod I'') (fun (x : M) => (f x, g x)) s x
theorem
MDifferentiableAt.prod_mk
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{E'' : Type u_8}
[NormedAddCommGroup E'']
[NormedSpace 𝕜 E'']
{H'' : Type u_9}
[TopologicalSpace H'']
{I'' : ModelWithCorners 𝕜 E'' H''}
{M'' : Type u_10}
[TopologicalSpace M'']
[ChartedSpace H'' M'']
{x : M}
{f : M → M'}
{g : M → M''}
(hf : MDifferentiableAt I I' f x)
(hg : MDifferentiableAt I I'' g x)
:
MDifferentiableAt I (I'.prod I'') (fun (x : M) => (f x, g x)) x
theorem
MDifferentiableWithinAt.prod_mk_space
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{E'' : Type u_8}
[NormedAddCommGroup E'']
[NormedSpace 𝕜 E'']
{x : M}
{s : Set M}
{f : M → E'}
{g : M → E''}
(hf : MDifferentiableWithinAt I (modelWithCornersSelf 𝕜 E') f s x)
(hg : MDifferentiableWithinAt I (modelWithCornersSelf 𝕜 E'') g s x)
:
MDifferentiableWithinAt I (modelWithCornersSelf 𝕜 (E' × E'')) (fun (x : M) => (f x, g x)) s x
theorem
MDifferentiableAt.prod_mk_space
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{E'' : Type u_8}
[NormedAddCommGroup E'']
[NormedSpace 𝕜 E'']
{x : M}
{f : M → E'}
{g : M → E''}
(hf : MDifferentiableAt I (modelWithCornersSelf 𝕜 E') f x)
(hg : MDifferentiableAt I (modelWithCornersSelf 𝕜 E'') g x)
:
MDifferentiableAt I (modelWithCornersSelf 𝕜 (E' × E'')) (fun (x : M) => (f x, g x)) x
theorem
MDifferentiableOn.prod_mk
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{E'' : Type u_8}
[NormedAddCommGroup E'']
[NormedSpace 𝕜 E'']
{H'' : Type u_9}
[TopologicalSpace H'']
{I'' : ModelWithCorners 𝕜 E'' H''}
{M'' : Type u_10}
[TopologicalSpace M'']
[ChartedSpace H'' M'']
{s : Set M}
{f : M → M'}
{g : M → M''}
(hf : MDifferentiableOn I I' f s)
(hg : MDifferentiableOn I I'' g s)
:
MDifferentiableOn I (I'.prod I'') (fun (x : M) => (f x, g x)) s
theorem
MDifferentiable.prod_mk
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{E'' : Type u_8}
[NormedAddCommGroup E'']
[NormedSpace 𝕜 E'']
{H'' : Type u_9}
[TopologicalSpace H'']
{I'' : ModelWithCorners 𝕜 E'' H''}
{M'' : Type u_10}
[TopologicalSpace M'']
[ChartedSpace H'' M'']
{f : M → M'}
{g : M → M''}
(hf : MDifferentiable I I' f)
(hg : MDifferentiable I I'' g)
:
MDifferentiable I (I'.prod I'') fun (x : M) => (f x, g x)
theorem
MDifferentiableOn.prod_mk_space
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{E'' : Type u_8}
[NormedAddCommGroup E'']
[NormedSpace 𝕜 E'']
{s : Set M}
{f : M → E'}
{g : M → E''}
(hf : MDifferentiableOn I (modelWithCornersSelf 𝕜 E') f s)
(hg : MDifferentiableOn I (modelWithCornersSelf 𝕜 E'') g s)
:
MDifferentiableOn I (modelWithCornersSelf 𝕜 (E' × E'')) (fun (x : M) => (f x, g x)) s
theorem
MDifferentiable.prod_mk_space
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{E'' : Type u_8}
[NormedAddCommGroup E'']
[NormedSpace 𝕜 E'']
{f : M → E'}
{g : M → E''}
(hf : MDifferentiable I (modelWithCornersSelf 𝕜 E') f)
(hg : MDifferentiable I (modelWithCornersSelf 𝕜 E'') g)
:
MDifferentiable I (modelWithCornersSelf 𝕜 (E' × E'')) fun (x : M) => (f x, g x)
theorem
writtenInExtChartAt_comp
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{E'' : Type u_8}
[NormedAddCommGroup E'']
[NormedSpace 𝕜 E'']
{H'' : Type u_9}
[TopologicalSpace H'']
{I'' : ModelWithCorners 𝕜 E'' H''}
{M'' : Type u_10}
[TopologicalSpace M'']
[ChartedSpace H'' M'']
{f : M → M'}
{x : M}
{s : Set M}
{g : M' → M''}
(h : ContinuousWithinAt f s x)
:
{y : E |
writtenInExtChartAt I I'' x (g ∘ f) y = (writtenInExtChartAt I' I'' (f x) g ∘ writtenInExtChartAt I I' x f) y} ∈ nhdsWithin (↑(extChartAt I x) x) (↑(extChartAt I x).symm ⁻¹' s ∩ Set.range ↑I)
theorem
UniqueMDiffWithinAt.eq
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
{f' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
{f₁' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
(U : UniqueMDiffWithinAt I s x)
(h : HasMFDerivWithinAt I I' f s x f')
(h₁ : HasMFDerivWithinAt I I' f s x f₁')
:
f' = f₁'
UniqueMDiffWithinAt
achieves its goal: it implies the uniqueness of the derivative.
theorem
UniqueMDiffOn.eq
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
{f' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
{f₁' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
(U : UniqueMDiffOn I s)
(hx : x ∈ s)
(h : HasMFDerivWithinAt I I' f s x f')
(h₁ : HasMFDerivWithinAt I I' f s x f₁')
:
f' = f₁'
General lemmas on derivatives of functions between manifolds #
We mimic the API for functions between vector spaces
theorem
mdifferentiableWithinAt_iff_of_mem_source
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
[SmoothManifoldWithCorners I M]
[SmoothManifoldWithCorners I' M']
{x' : M}
{y : M'}
(hx : x' ∈ (chartAt H x).source)
(hy : f x' ∈ (chartAt H' y).source)
:
MDifferentiableWithinAt I I' f s x' ↔ ContinuousWithinAt f s x' ∧ DifferentiableWithinAt 𝕜 (↑(extChartAt I' y) ∘ f ∘ ↑(extChartAt I x).symm)
(↑(extChartAt I x).symm ⁻¹' s ∩ Set.range ↑I) (↑(extChartAt I x) x')
One can reformulate differentiability within a set at a point as continuity within this set at this point, and differentiability in any chart containing that point.
theorem
mfderivWithin_zero_of_not_mdifferentiableWithinAt
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
(h : ¬MDifferentiableWithinAt I I' f s x)
:
mfderivWithin I I' f s x = 0
theorem
mfderiv_zero_of_not_mdifferentiableAt
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
(h : ¬MDifferentiableAt I I' f x)
:
theorem
HasMFDerivWithinAt.mono
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
{t : Set M}
{f' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
(h : HasMFDerivWithinAt I I' f t x f')
(hst : s ⊆ t)
:
HasMFDerivWithinAt I I' f s x f'
theorem
HasMFDerivAt.hasMFDerivWithinAt
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
{f' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
(h : HasMFDerivAt I I' f x f')
:
HasMFDerivWithinAt I I' f s x f'
theorem
HasMFDerivWithinAt.mdifferentiableWithinAt
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
{f' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
(h : HasMFDerivWithinAt I I' f s x f')
:
MDifferentiableWithinAt I I' f s x
theorem
HasMFDerivAt.mdifferentiableAt
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{f' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
(h : HasMFDerivAt I I' f x f')
:
MDifferentiableAt I I' f x
@[simp]
theorem
hasMFDerivWithinAt_univ
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{f' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
:
HasMFDerivWithinAt I I' f Set.univ x f' ↔ HasMFDerivAt I I' f x f'
theorem
hasMFDerivAt_unique
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{f₀' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
{f₁' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
(h₀ : HasMFDerivAt I I' f x f₀')
(h₁ : HasMFDerivAt I I' f x f₁')
:
f₀' = f₁'
theorem
hasMFDerivWithinAt_inter'
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
{t : Set M}
{f' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
(h : t ∈ nhdsWithin x s)
:
HasMFDerivWithinAt I I' f (s ∩ t) x f' ↔ HasMFDerivWithinAt I I' f s x f'
theorem
hasMFDerivWithinAt_inter
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
{t : Set M}
{f' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
(h : t ∈ nhds x)
:
HasMFDerivWithinAt I I' f (s ∩ t) x f' ↔ HasMFDerivWithinAt I I' f s x f'
theorem
HasMFDerivWithinAt.union
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
{t : Set M}
{f' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
(hs : HasMFDerivWithinAt I I' f s x f')
(ht : HasMFDerivWithinAt I I' f t x f')
:
HasMFDerivWithinAt I I' f (s ∪ t) x f'
theorem
HasMFDerivWithinAt.mono_of_mem
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
{t : Set M}
{f' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
(h : HasMFDerivWithinAt I I' f s x f')
(ht : s ∈ nhdsWithin x t)
:
HasMFDerivWithinAt I I' f t x f'
theorem
HasMFDerivWithinAt.hasMFDerivAt
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
{f' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
(h : HasMFDerivWithinAt I I' f s x f')
(hs : s ∈ nhds x)
:
HasMFDerivAt I I' f x f'
theorem
MDifferentiableWithinAt.hasMFDerivWithinAt
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
(h : MDifferentiableWithinAt I I' f s x)
:
HasMFDerivWithinAt I I' f s x (mfderivWithin I I' f s x)
theorem
MDifferentiableWithinAt.mfderivWithin
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
(h : MDifferentiableWithinAt I I' f s x)
:
mfderivWithin I I' f s x = fderivWithin 𝕜 (writtenInExtChartAt I I' x f) (↑(extChartAt I x).symm ⁻¹' s ∩ Set.range ↑I) (↑(extChartAt I x) x)
theorem
MDifferentiableAt.hasMFDerivAt
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
(h : MDifferentiableAt I I' f x)
:
HasMFDerivAt I I' f x (mfderiv I I' f x)
theorem
MDifferentiableAt.mfderiv
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
(h : MDifferentiableAt I I' f x)
:
mfderiv I I' f x = fderivWithin 𝕜 (writtenInExtChartAt I I' x f) (Set.range ↑I) (↑(extChartAt I x) x)
theorem
HasMFDerivAt.mfderiv
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{f' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
(h : HasMFDerivAt I I' f x f')
:
theorem
HasMFDerivWithinAt.mfderivWithin
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
{f' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
(h : HasMFDerivWithinAt I I' f s x f')
(hxs : UniqueMDiffWithinAt I s x)
:
mfderivWithin I I' f s x = f'
theorem
MDifferentiable.mfderivWithin
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
(h : MDifferentiableAt I I' f x)
(hxs : UniqueMDiffWithinAt I s x)
:
mfderivWithin I I' f s x = mfderiv I I' f x
theorem
mfderivWithin_subset
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
{t : Set M}
(st : s ⊆ t)
(hs : UniqueMDiffWithinAt I s x)
(h : MDifferentiableWithinAt I I' f t x)
:
mfderivWithin I I' f s x = mfderivWithin I I' f t x
@[simp]
theorem
mfderivWithin_univ
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
:
mfderivWithin I I' f Set.univ = mfderiv I I' f
theorem
mfderivWithin_inter
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
{t : Set M}
(ht : t ∈ nhds x)
:
mfderivWithin I I' f (s ∩ t) x = mfderivWithin I I' f s x
theorem
mfderivWithin_of_mem_nhds
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
(h : s ∈ nhds x)
:
mfderivWithin I I' f s x = mfderiv I I' f x
theorem
mfderivWithin_of_isOpen
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
(hs : IsOpen s)
(hx : x ∈ s)
:
mfderivWithin I I' f s x = mfderiv I I' f x
theorem
mfderivWithin_eq_mfderiv
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
(hs : UniqueMDiffWithinAt I s x)
(h : MDifferentiableAt I I' f x)
:
mfderivWithin I I' f s x = mfderiv I I' f x
theorem
mdifferentiableAt_iff_of_mem_source
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
[SmoothManifoldWithCorners I M]
[SmoothManifoldWithCorners I' M']
{x' : M}
{y : M'}
(hx : x' ∈ (chartAt H x).source)
(hy : f x' ∈ (chartAt H' y).source)
:
MDifferentiableAt I I' f x' ↔ ContinuousAt f x' ∧ DifferentiableWithinAt 𝕜 (↑(extChartAt I' y) ∘ f ∘ ↑(extChartAt I x).symm) (Set.range ↑I) (↑(extChartAt I x) x')
Deriving continuity from differentiability on manifolds #
theorem
HasMFDerivWithinAt.continuousWithinAt
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
{f' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
(h : HasMFDerivWithinAt I I' f s x f')
:
ContinuousWithinAt f s x
theorem
HasMFDerivAt.continuousAt
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{f' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
(h : HasMFDerivAt I I' f x f')
:
ContinuousAt f x
theorem
tangentMapWithin_subset
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{s : Set M}
{t : Set M}
{p : TangentBundle I M}
(st : s ⊆ t)
(hs : UniqueMDiffWithinAt I s p.proj)
(h : MDifferentiableWithinAt I I' f t p.proj)
:
tangentMapWithin I I' f s p = tangentMapWithin I I' f t p
theorem
tangentMapWithin_univ
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
:
tangentMapWithin I I' f Set.univ = tangentMap I I' f
theorem
tangentMapWithin_eq_tangentMap
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{s : Set M}
{p : TangentBundle I M}
(hs : UniqueMDiffWithinAt I s p.proj)
(h : MDifferentiableAt I I' f p.proj)
:
tangentMapWithin I I' f s p = tangentMap I I' f p
@[simp]
theorem
tangentMapWithin_proj
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{s : Set M}
{p : TangentBundle I M}
:
(tangentMapWithin I I' f s p).proj = f p.proj
@[simp]
theorem
tangentMap_proj
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{p : TangentBundle I M}
:
(tangentMap I I' f p).proj = f p.proj
Congruence lemmas for derivatives on manifolds #
theorem
HasMFDerivAt.congr_mfderiv
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{f' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
{f₁' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
(h : HasMFDerivAt I I' f x f')
(h' : f' = f₁')
:
HasMFDerivAt I I' f x f₁'
theorem
HasMFDerivWithinAt.congr_mfderiv
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{s : Set M}
{f' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
{f₁' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
(h : HasMFDerivWithinAt I I' f s x f')
(h' : f' = f₁')
:
HasMFDerivWithinAt I I' f s x f₁'
theorem
HasMFDerivWithinAt.congr_of_eventuallyEq
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{f₁ : M → M'}
{x : M}
{s : Set M}
{f' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
(h : HasMFDerivWithinAt I I' f s x f')
(h₁ : f₁ =ᶠ[nhdsWithin x s] f)
(hx : f₁ x = f x)
:
HasMFDerivWithinAt I I' f₁ s x f'
theorem
HasMFDerivWithinAt.congr_mono
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{f₁ : M → M'}
{x : M}
{s : Set M}
{t : Set M}
{f' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
(h : HasMFDerivWithinAt I I' f s x f')
(ht : ∀ x ∈ t, f₁ x = f x)
(hx : f₁ x = f x)
(h₁ : t ⊆ s)
:
HasMFDerivWithinAt I I' f₁ t x f'
theorem
HasMFDerivAt.congr_of_eventuallyEq
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{f₁ : M → M'}
{x : M}
{f' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
(h : HasMFDerivAt I I' f x f')
(h₁ : f₁ =ᶠ[nhds x] f)
:
HasMFDerivAt I I' f₁ x f'
theorem
MDifferentiableWithinAt.congr_of_eventuallyEq
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{f₁ : M → M'}
{x : M}
{s : Set M}
(h : MDifferentiableWithinAt I I' f s x)
(h₁ : f₁ =ᶠ[nhdsWithin x s] f)
(hx : f₁ x = f x)
:
MDifferentiableWithinAt I I' f₁ s x
theorem
Filter.EventuallyEq.mdifferentiableWithinAt_iff
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
(I : ModelWithCorners 𝕜 E H)
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
(I' : ModelWithCorners 𝕜 E' H')
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{f₁ : M → M'}
{x : M}
{s : Set M}
(h₁ : f₁ =ᶠ[nhdsWithin x s] f)
(hx : f₁ x = f x)
:
MDifferentiableWithinAt I I' f s x ↔ MDifferentiableWithinAt I I' f₁ s x
theorem
MDifferentiableWithinAt.congr_mono
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{f₁ : M → M'}
{x : M}
{s : Set M}
{t : Set M}
(h : MDifferentiableWithinAt I I' f s x)
(ht : ∀ x ∈ t, f₁ x = f x)
(hx : f₁ x = f x)
(h₁ : t ⊆ s)
:
MDifferentiableWithinAt I I' f₁ t x
theorem
MDifferentiableWithinAt.congr
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{f₁ : M → M'}
{x : M}
{s : Set M}
(h : MDifferentiableWithinAt I I' f s x)
(ht : ∀ x ∈ s, f₁ x = f x)
(hx : f₁ x = f x)
:
MDifferentiableWithinAt I I' f₁ s x
theorem
MDifferentiableOn.congr_mono
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{f₁ : M → M'}
{s : Set M}
{t : Set M}
(h : MDifferentiableOn I I' f s)
(h' : ∀ x ∈ t, f₁ x = f x)
(h₁ : t ⊆ s)
:
MDifferentiableOn I I' f₁ t
theorem
MDifferentiableAt.congr_of_eventuallyEq
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{f₁ : M → M'}
{x : M}
(h : MDifferentiableAt I I' f x)
(hL : f₁ =ᶠ[nhds x] f)
:
MDifferentiableAt I I' f₁ x
theorem
MDifferentiableWithinAt.mfderivWithin_congr_mono
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{f₁ : M → M'}
{x : M}
{s : Set M}
{t : Set M}
(h : MDifferentiableWithinAt I I' f s x)
(hs : ∀ x ∈ t, f₁ x = f x)
(hx : f₁ x = f x)
(hxt : UniqueMDiffWithinAt I t x)
(h₁ : t ⊆ s)
:
mfderivWithin I I' f₁ t x = mfderivWithin I I' f s x
theorem
Filter.EventuallyEq.mfderivWithin_eq
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{f₁ : M → M'}
{x : M}
{s : Set M}
(hs : UniqueMDiffWithinAt I s x)
(hL : f₁ =ᶠ[nhdsWithin x s] f)
(hx : f₁ x = f x)
:
mfderivWithin I I' f₁ s x = mfderivWithin I I' f s x
theorem
mfderivWithin_congr
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{f₁ : M → M'}
{x : M}
{s : Set M}
(hs : UniqueMDiffWithinAt I s x)
(hL : ∀ x ∈ s, f₁ x = f x)
(hx : f₁ x = f x)
:
mfderivWithin I I' f₁ s x = mfderivWithin I I' f s x
theorem
tangentMapWithin_congr
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{f₁ : M → M'}
{s : Set M}
(h : ∀ x ∈ s, f x = f₁ x)
(p : TangentBundle I M)
(hp : p.proj ∈ s)
(hs : UniqueMDiffWithinAt I s p.proj)
:
tangentMapWithin I I' f s p = tangentMapWithin I I' f₁ s p
theorem
Filter.EventuallyEq.mfderiv_eq
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{f₁ : M → M'}
{x : M}
(hL : f₁ =ᶠ[nhds x] f)
:
theorem
mfderiv_congr_point
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{x' : M}
(h : x = x')
:
A congruence lemma for mfderiv
, (ab)using the fact that TangentSpace I' (f x)
is
definitionally equal to E'
.
theorem
mfderiv_congr
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
{x : M}
{f' : M → M'}
(h : f = f')
:
A congruence lemma for mfderiv
, (ab)using the fact that TangentSpace I' (f x)
is
definitionally equal to E'
.
Composition lemmas #
theorem
HasMFDerivWithinAt.comp
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{E'' : Type u_8}
[NormedAddCommGroup E'']
[NormedSpace 𝕜 E'']
{H'' : Type u_9}
[TopologicalSpace H'']
{I'' : ModelWithCorners 𝕜 E'' H''}
{M'' : Type u_10}
[TopologicalSpace M'']
[ChartedSpace H'' M'']
{f : M → M'}
(x : M)
{s : Set M}
{g : M' → M''}
{u : Set M'}
{f' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
{g' : TangentSpace I' (f x) →L[𝕜] TangentSpace I'' (g (f x))}
(hg : HasMFDerivWithinAt I' I'' g u (f x) g')
(hf : HasMFDerivWithinAt I I' f s x f')
(hst : s ⊆ f ⁻¹' u)
:
HasMFDerivWithinAt I I'' (g ∘ f) s x (g'.comp f')
theorem
HasMFDerivAt.comp
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{E'' : Type u_8}
[NormedAddCommGroup E'']
[NormedSpace 𝕜 E'']
{H'' : Type u_9}
[TopologicalSpace H'']
{I'' : ModelWithCorners 𝕜 E'' H''}
{M'' : Type u_10}
[TopologicalSpace M'']
[ChartedSpace H'' M'']
{f : M → M'}
(x : M)
{g : M' → M''}
{f' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
{g' : TangentSpace I' (f x) →L[𝕜] TangentSpace I'' (g (f x))}
(hg : HasMFDerivAt I' I'' g (f x) g')
(hf : HasMFDerivAt I I' f x f')
:
HasMFDerivAt I I'' (g ∘ f) x (g'.comp f')
The chain rule for manifolds.
theorem
HasMFDerivAt.comp_hasMFDerivWithinAt
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{E'' : Type u_8}
[NormedAddCommGroup E'']
[NormedSpace 𝕜 E'']
{H'' : Type u_9}
[TopologicalSpace H'']
{I'' : ModelWithCorners 𝕜 E'' H''}
{M'' : Type u_10}
[TopologicalSpace M'']
[ChartedSpace H'' M'']
{f : M → M'}
(x : M)
{s : Set M}
{g : M' → M''}
{f' : TangentSpace I x →L[𝕜] TangentSpace I' (f x)}
{g' : TangentSpace I' (f x) →L[𝕜] TangentSpace I'' (g (f x))}
(hg : HasMFDerivAt I' I'' g (f x) g')
(hf : HasMFDerivWithinAt I I' f s x f')
:
HasMFDerivWithinAt I I'' (g ∘ f) s x (g'.comp f')
theorem
MDifferentiableWithinAt.comp
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{E'' : Type u_8}
[NormedAddCommGroup E'']
[NormedSpace 𝕜 E'']
{H'' : Type u_9}
[TopologicalSpace H'']
{I'' : ModelWithCorners 𝕜 E'' H''}
{M'' : Type u_10}
[TopologicalSpace M'']
[ChartedSpace H'' M'']
{f : M → M'}
(x : M)
{s : Set M}
{g : M' → M''}
{u : Set M'}
(hg : MDifferentiableWithinAt I' I'' g u (f x))
(hf : MDifferentiableWithinAt I I' f s x)
(h : s ⊆ f ⁻¹' u)
:
MDifferentiableWithinAt I I'' (g ∘ f) s x
theorem
MDifferentiableAt.comp
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{E'' : Type u_8}
[NormedAddCommGroup E'']
[NormedSpace 𝕜 E'']
{H'' : Type u_9}
[TopologicalSpace H'']
{I'' : ModelWithCorners 𝕜 E'' H''}
{M'' : Type u_10}
[TopologicalSpace M'']
[ChartedSpace H'' M'']
{f : M → M'}
(x : M)
{g : M' → M''}
(hg : MDifferentiableAt I' I'' g (f x))
(hf : MDifferentiableAt I I' f x)
:
MDifferentiableAt I I'' (g ∘ f) x
theorem
mfderivWithin_comp
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{E'' : Type u_8}
[NormedAddCommGroup E'']
[NormedSpace 𝕜 E'']
{H'' : Type u_9}
[TopologicalSpace H'']
{I'' : ModelWithCorners 𝕜 E'' H''}
{M'' : Type u_10}
[TopologicalSpace M'']
[ChartedSpace H'' M'']
{f : M → M'}
(x : M)
{s : Set M}
{g : M' → M''}
{u : Set M'}
(hg : MDifferentiableWithinAt I' I'' g u (f x))
(hf : MDifferentiableWithinAt I I' f s x)
(h : s ⊆ f ⁻¹' u)
(hxs : UniqueMDiffWithinAt I s x)
:
mfderivWithin I I'' (g ∘ f) s x = (mfderivWithin I' I'' g u (f x)).comp (mfderivWithin I I' f s x)
theorem
mfderiv_comp
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{E'' : Type u_8}
[NormedAddCommGroup E'']
[NormedSpace 𝕜 E'']
{H'' : Type u_9}
[TopologicalSpace H'']
{I'' : ModelWithCorners 𝕜 E'' H''}
{M'' : Type u_10}
[TopologicalSpace M'']
[ChartedSpace H'' M'']
{f : M → M'}
(x : M)
{g : M' → M''}
(hg : MDifferentiableAt I' I'' g (f x))
(hf : MDifferentiableAt I I' f x)
:
theorem
mfderiv_comp_of_eq
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{E'' : Type u_8}
[NormedAddCommGroup E'']
[NormedSpace 𝕜 E'']
{H'' : Type u_9}
[TopologicalSpace H'']
{I'' : ModelWithCorners 𝕜 E'' H''}
{M'' : Type u_10}
[TopologicalSpace M'']
[ChartedSpace H'' M'']
{f : M → M'}
{g : M' → M''}
{x : M}
{y : M'}
(hg : MDifferentiableAt I' I'' g y)
(hf : MDifferentiableAt I I' f x)
(hy : f x = y)
:
theorem
MDifferentiableOn.comp
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{E'' : Type u_8}
[NormedAddCommGroup E'']
[NormedSpace 𝕜 E'']
{H'' : Type u_9}
[TopologicalSpace H'']
{I'' : ModelWithCorners 𝕜 E'' H''}
{M'' : Type u_10}
[TopologicalSpace M'']
[ChartedSpace H'' M'']
{f : M → M'}
{s : Set M}
{g : M' → M''}
{u : Set M'}
(hg : MDifferentiableOn I' I'' g u)
(hf : MDifferentiableOn I I' f s)
(st : s ⊆ f ⁻¹' u)
:
MDifferentiableOn I I'' (g ∘ f) s
theorem
MDifferentiable.comp
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{E'' : Type u_8}
[NormedAddCommGroup E'']
[NormedSpace 𝕜 E'']
{H'' : Type u_9}
[TopologicalSpace H'']
{I'' : ModelWithCorners 𝕜 E'' H''}
{M'' : Type u_10}
[TopologicalSpace M'']
[ChartedSpace H'' M'']
{f : M → M'}
{g : M' → M''}
(hg : MDifferentiable I' I'' g)
(hf : MDifferentiable I I' f)
:
MDifferentiable I I'' (g ∘ f)
theorem
tangentMapWithin_comp_at
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{E'' : Type u_8}
[NormedAddCommGroup E'']
[NormedSpace 𝕜 E'']
{H'' : Type u_9}
[TopologicalSpace H'']
{I'' : ModelWithCorners 𝕜 E'' H''}
{M'' : Type u_10}
[TopologicalSpace M'']
[ChartedSpace H'' M'']
{f : M → M'}
{s : Set M}
{g : M' → M''}
{u : Set M'}
(p : TangentBundle I M)
(hg : MDifferentiableWithinAt I' I'' g u (f p.proj))
(hf : MDifferentiableWithinAt I I' f s p.proj)
(h : s ⊆ f ⁻¹' u)
(hps : UniqueMDiffWithinAt I s p.proj)
:
tangentMapWithin I I'' (g ∘ f) s p = tangentMapWithin I' I'' g u (tangentMapWithin I I' f s p)
theorem
tangentMap_comp_at
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{E'' : Type u_8}
[NormedAddCommGroup E'']
[NormedSpace 𝕜 E'']
{H'' : Type u_9}
[TopologicalSpace H'']
{I'' : ModelWithCorners 𝕜 E'' H''}
{M'' : Type u_10}
[TopologicalSpace M'']
[ChartedSpace H'' M'']
{f : M → M'}
{g : M' → M''}
(p : TangentBundle I M)
(hg : MDifferentiableAt I' I'' g (f p.proj))
(hf : MDifferentiableAt I I' f p.proj)
:
tangentMap I I'' (g ∘ f) p = tangentMap I' I'' g (tangentMap I I' f p)
theorem
tangentMap_comp
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{E'' : Type u_8}
[NormedAddCommGroup E'']
[NormedSpace 𝕜 E'']
{H'' : Type u_9}
[TopologicalSpace H'']
{I'' : ModelWithCorners 𝕜 E'' H''}
{M'' : Type u_10}
[TopologicalSpace M'']
[ChartedSpace H'' M'']
{f : M → M'}
{g : M' → M''}
(hg : MDifferentiable I' I'' g)
(hf : MDifferentiable I I' f)
:
tangentMap I I'' (g ∘ f) = tangentMap I' I'' g ∘ tangentMap I I' f