Dual submodule with respect to a bilinear form. #
Main definitions and results #
BilinForm.dualSubmodule
: The dual submodule with respect to a bilinear form.BilinForm.dualSubmodule_span_of_basis
: The dual of a lattice is spanned by the dual basis.
TODO #
Properly develop the material in the context of lattices.
def
LinearMap.BilinForm.dualSubmodule
{R : Type u_1}
{S : Type u_2}
{M : Type u_3}
[CommRing R]
[Field S]
[AddCommGroup M]
[Algebra R S]
[Module R M]
[Module S M]
[IsScalarTower R S M]
(B : LinearMap.BilinForm S M)
(N : Submodule R M)
:
Submodule R M
The dual submodule of a submodule with respect to a bilinear form.
Equations
Instances For
theorem
LinearMap.BilinForm.mem_dualSubmodule
{R : Type u_1}
{S : Type u_3}
{M : Type u_2}
[CommRing R]
[Field S]
[AddCommGroup M]
[Algebra R S]
[Module R M]
[Module S M]
[IsScalarTower R S M]
(B : LinearMap.BilinForm S M)
{N : Submodule R M}
{x : M}
:
theorem
LinearMap.BilinForm.le_flip_dualSubmodule
{R : Type u_1}
{S : Type u_3}
{M : Type u_2}
[CommRing R]
[Field S]
[AddCommGroup M]
[Algebra R S]
[Module R M]
[Module S M]
[IsScalarTower R S M]
(B : LinearMap.BilinForm S M)
{N₁ : Submodule R M}
{N₂ : Submodule R M}
:
noncomputable def
LinearMap.BilinForm.dualSubmoduleParing
{R : Type u_1}
{S : Type u_2}
{M : Type u_3}
[CommRing R]
[Field S]
[AddCommGroup M]
[Algebra R S]
[Module R M]
[Module S M]
[IsScalarTower R S M]
(B : LinearMap.BilinForm S M)
{N : Submodule R M}
(x : ↥(B.dualSubmodule N))
(y : ↥N)
:
R
The natural paring of B.dualSubmodule N
and N
.
This is bundled as a bilinear map in BilinForm.dualSubmoduleToDual
.
Equations
- B.dualSubmoduleParing x y = ⋯.choose
Instances For
@[simp]
theorem
LinearMap.BilinForm.dualSubmoduleParing_spec
{R : Type u_1}
{S : Type u_3}
{M : Type u_2}
[CommRing R]
[Field S]
[AddCommGroup M]
[Algebra R S]
[Module R M]
[Module S M]
[IsScalarTower R S M]
(B : LinearMap.BilinForm S M)
{N : Submodule R M}
(x : ↥(B.dualSubmodule N))
(y : ↥N)
:
(algebraMap R S) (B.dualSubmoduleParing x y) = (B ↑x) ↑y
@[simp]
theorem
LinearMap.BilinForm.dualSubmoduleToDual_apply_apply
{R : Type u_1}
{S : Type u_2}
{M : Type u_3}
[CommRing R]
[Field S]
[AddCommGroup M]
[Algebra R S]
[Module R M]
[Module S M]
[IsScalarTower R S M]
(B : LinearMap.BilinForm S M)
[NoZeroSMulDivisors R S]
(N : Submodule R M)
(x : ↥(B.dualSubmodule N))
(y : ↥N)
:
((B.dualSubmoduleToDual N) x) y = B.dualSubmoduleParing x y
noncomputable def
LinearMap.BilinForm.dualSubmoduleToDual
{R : Type u_1}
{S : Type u_2}
{M : Type u_3}
[CommRing R]
[Field S]
[AddCommGroup M]
[Algebra R S]
[Module R M]
[Module S M]
[IsScalarTower R S M]
(B : LinearMap.BilinForm S M)
[NoZeroSMulDivisors R S]
(N : Submodule R M)
:
↥(B.dualSubmodule N) →ₗ[R] Module.Dual R ↥N
The natural paring of B.dualSubmodule N
and N
.
Equations
- B.dualSubmoduleToDual N = { toFun := fun (x : ↥(B.dualSubmodule N)) => { toFun := B.dualSubmoduleParing x, map_add' := ⋯, map_smul' := ⋯ }, map_add' := ⋯, map_smul' := ⋯ }
Instances For
theorem
LinearMap.BilinForm.dualSubmoduleToDual_injective
{R : Type u_3}
{S : Type u_1}
{M : Type u_2}
[CommRing R]
[Field S]
[AddCommGroup M]
[Algebra R S]
[Module R M]
[Module S M]
[IsScalarTower R S M]
(B : LinearMap.BilinForm S M)
(hB : B.Nondegenerate)
[NoZeroSMulDivisors R S]
(N : Submodule R M)
(hN : Submodule.span S ↑N = ⊤)
:
Function.Injective ⇑(B.dualSubmoduleToDual N)
theorem
LinearMap.BilinForm.dualSubmodule_span_of_basis
{R : Type u_4}
{S : Type u_2}
{M : Type u_3}
[CommRing R]
[Field S]
[AddCommGroup M]
[Algebra R S]
[Module R M]
[Module S M]
[IsScalarTower R S M]
(B : LinearMap.BilinForm S M)
{ι : Type u_1}
[Finite ι]
[DecidableEq ι]
(hB : B.Nondegenerate)
(b : Basis ι S M)
:
B.dualSubmodule (Submodule.span R (Set.range ⇑b)) = Submodule.span R (Set.range ⇑(B.dualBasis hB b))
theorem
LinearMap.BilinForm.dualSubmodule_dualSubmodule_flip_of_basis
{R : Type u_4}
{S : Type u_2}
{M : Type u_3}
[CommRing R]
[Field S]
[AddCommGroup M]
[Algebra R S]
[Module R M]
[Module S M]
[IsScalarTower R S M]
(B : LinearMap.BilinForm S M)
{ι : Type u_1}
[Finite ι]
(hB : B.Nondegenerate)
(b : Basis ι S M)
:
B.dualSubmodule (B.flip.dualSubmodule (Submodule.span R (Set.range ⇑b))) = Submodule.span R (Set.range ⇑b)
theorem
LinearMap.BilinForm.dualSubmodule_flip_dualSubmodule_of_basis
{R : Type u_4}
{S : Type u_2}
{M : Type u_3}
[CommRing R]
[Field S]
[AddCommGroup M]
[Algebra R S]
[Module R M]
[Module S M]
[IsScalarTower R S M]
(B : LinearMap.BilinForm S M)
{ι : Type u_1}
[Finite ι]
(hB : B.Nondegenerate)
(b : Basis ι S M)
:
B.flip.dualSubmodule (B.dualSubmodule (Submodule.span R (Set.range ⇑b))) = Submodule.span R (Set.range ⇑b)
theorem
LinearMap.BilinForm.dualSubmodule_dualSubmodule_of_basis
{R : Type u_4}
{S : Type u_2}
{M : Type u_3}
[CommRing R]
[Field S]
[AddCommGroup M]
[Algebra R S]
[Module R M]
[Module S M]
[IsScalarTower R S M]
(B : LinearMap.BilinForm S M)
{ι : Type u_1}
[Finite ι]
(hB : B.Nondegenerate)
(hB' : B.IsSymm)
(b : Basis ι S M)
:
B.dualSubmodule (B.dualSubmodule (Submodule.span R (Set.range ⇑b))) = Submodule.span R (Set.range ⇑b)