HepLean Documentation

Mathlib.LinearAlgebra.Finsupp.LinearCombination

Finsupp.linearCombination #

Main definitions #

Tags #

function with finite support, module, linear algebra

def Finsupp.linearCombination {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] (v : αM) :
(α →₀ R) →ₗ[R] M

Interprets (l : α →₀ R) as a linear combination of the elements in the family (v : α → M) and evaluates this linear combination.

Equations
Instances For
    @[deprecated Finsupp.linearCombination]
    def Finsupp.total {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] (v : αM) :
    (α →₀ R) →ₗ[R] M

    Alias of Finsupp.linearCombination.


    Interprets (l : α →₀ R) as a linear combination of the elements in the family (v : α → M) and evaluates this linear combination.

    Equations
    Instances For
      theorem Finsupp.linearCombination_apply {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {v : αM} (l : α →₀ R) :
      (Finsupp.linearCombination R v) l = l.sum fun (i : α) (a : R) => a v i
      @[deprecated Finsupp.linearCombination_apply]
      theorem Finsupp.total_apply {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {v : αM} (l : α →₀ R) :
      (Finsupp.linearCombination R v) l = l.sum fun (i : α) (a : R) => a v i

      Alias of Finsupp.linearCombination_apply.

      theorem Finsupp.linearCombination_apply_of_mem_supported {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {v : αM} {l : α →₀ R} {s : Finset α} (hs : l Finsupp.supported R R s) :
      (Finsupp.linearCombination R v) l = is, l i v i
      @[deprecated Finsupp.linearCombination_apply_of_mem_supported]
      theorem Finsupp.total_apply_of_mem_supported {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {v : αM} {l : α →₀ R} {s : Finset α} (hs : l Finsupp.supported R R s) :
      (Finsupp.linearCombination R v) l = is, l i v i

      Alias of Finsupp.linearCombination_apply_of_mem_supported.

      @[simp]
      theorem Finsupp.linearCombination_single {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {v : αM} (c : R) (a : α) :
      @[deprecated Finsupp.linearCombination_single]
      theorem Finsupp.total_single {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {v : αM} (c : R) (a : α) :

      Alias of Finsupp.linearCombination_single.

      theorem Finsupp.linearCombination_zero_apply {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] (x : α →₀ R) :
      @[deprecated Finsupp.linearCombination_zero_apply]
      theorem Finsupp.total_zero_apply {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] (x : α →₀ R) :

      Alias of Finsupp.linearCombination_zero_apply.

      @[simp]
      theorem Finsupp.linearCombination_zero (α : Type u_1) (M : Type u_2) (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] :
      @[deprecated Finsupp.linearCombination_zero]
      theorem Finsupp.total_zero (α : Type u_1) (M : Type u_2) (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] :

      Alias of Finsupp.linearCombination_zero.

      theorem Finsupp.linearCombination_linear_comp {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {M' : Type u_8} [AddCommMonoid M'] [Module R M'] {v : αM} (f : M →ₗ[R] M') :
      theorem Finsupp.apply_linearCombination {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {M' : Type u_8} [AddCommMonoid M'] [Module R M'] (f : M →ₗ[R] M') (v : αM) (l : α →₀ R) :
      @[deprecated Finsupp.apply_linearCombination]
      theorem Finsupp.apply_total {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {M' : Type u_8} [AddCommMonoid M'] [Module R M'] (f : M →ₗ[R] M') (v : αM) (l : α →₀ R) :

      Alias of Finsupp.apply_linearCombination.

      theorem Finsupp.apply_linearCombination_id {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {M' : Type u_8} [AddCommMonoid M'] [Module R M'] (f : M →ₗ[R] M') (l : M →₀ R) :
      @[deprecated Finsupp.apply_linearCombination_id]
      theorem Finsupp.apply_total_id {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {M' : Type u_8} [AddCommMonoid M'] [Module R M'] (f : M →ₗ[R] M') (l : M →₀ R) :

      Alias of Finsupp.apply_linearCombination_id.

      theorem Finsupp.linearCombination_unique {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] [Unique α] (l : α →₀ R) (v : αM) :
      (Finsupp.linearCombination R v) l = l default v default
      @[deprecated Finsupp.linearCombination_unique]
      theorem Finsupp.total_unique {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] [Unique α] (l : α →₀ R) (v : αM) :
      (Finsupp.linearCombination R v) l = l default v default

      Alias of Finsupp.linearCombination_unique.

      @[deprecated Finsupp.linearCombination_surjective]
      theorem Finsupp.total_surjective {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {v : αM} (h : Function.Surjective v) :

      Alias of Finsupp.linearCombination_surjective.

      theorem Finsupp.linearCombination_range {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {v : αM} (h : Function.Surjective v) :
      @[deprecated Finsupp.linearCombination_range]
      theorem Finsupp.total_range {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {v : αM} (h : Function.Surjective v) :

      Alias of Finsupp.linearCombination_range.

      Any module is a quotient of a free module. This is stated as surjectivity of Finsupp.linearCombination R id : (M →₀ R) →ₗ[R] M.

      @[deprecated Finsupp.linearCombination_id_surjective]

      Alias of Finsupp.linearCombination_id_surjective.


      Any module is a quotient of a free module. This is stated as surjectivity of Finsupp.linearCombination R id : (M →₀ R) →ₗ[R] M.

      @[deprecated Finsupp.range_linearCombination]
      theorem Finsupp.range_total {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {v : αM} :

      Alias of Finsupp.range_linearCombination.

      theorem Finsupp.lmapDomain_linearCombination {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {α' : Type u_7} {M' : Type u_8} [AddCommMonoid M'] [Module R M'] {v : αM} {v' : α'M'} (f : αα') (g : M →ₗ[R] M') (h : ∀ (i : α), g (v i) = v' (f i)) :
      @[deprecated Finsupp.lmapDomain_linearCombination]
      theorem Finsupp.lmapDomain_total {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {α' : Type u_7} {M' : Type u_8} [AddCommMonoid M'] [Module R M'] {v : αM} {v' : α'M'} (f : αα') (g : M →ₗ[R] M') (h : ∀ (i : α), g (v i) = v' (f i)) :

      Alias of Finsupp.lmapDomain_linearCombination.

      theorem Finsupp.linearCombination_comp_lmapDomain {α : Type u_1} (R : Type u_5) [Semiring R] {α' : Type u_7} {M' : Type u_8} [AddCommMonoid M'] [Module R M'] {v' : α'M'} (f : αα') :
      @[deprecated Finsupp.linearCombination_comp_lmapDomain]
      theorem Finsupp.total_comp_lmapDomain {α : Type u_1} (R : Type u_5) [Semiring R] {α' : Type u_7} {M' : Type u_8} [AddCommMonoid M'] [Module R M'] {v' : α'M'} (f : αα') :

      Alias of Finsupp.linearCombination_comp_lmapDomain.

      @[simp]
      theorem Finsupp.linearCombination_embDomain {α : Type u_1} (R : Type u_5) [Semiring R] {α' : Type u_7} {M' : Type u_8} [AddCommMonoid M'] [Module R M'] {v' : α'M'} (f : α α') (l : α →₀ R) :
      @[deprecated Finsupp.linearCombination_embDomain]
      theorem Finsupp.total_embDomain {α : Type u_1} (R : Type u_5) [Semiring R] {α' : Type u_7} {M' : Type u_8} [AddCommMonoid M'] [Module R M'] {v' : α'M'} (f : α α') (l : α →₀ R) :

      Alias of Finsupp.linearCombination_embDomain.

      @[simp]
      theorem Finsupp.linearCombination_mapDomain {α : Type u_1} (R : Type u_5) [Semiring R] {α' : Type u_7} {M' : Type u_8} [AddCommMonoid M'] [Module R M'] {v' : α'M'} (f : αα') (l : α →₀ R) :
      @[deprecated Finsupp.linearCombination_mapDomain]
      theorem Finsupp.total_mapDomain {α : Type u_1} (R : Type u_5) [Semiring R] {α' : Type u_7} {M' : Type u_8} [AddCommMonoid M'] [Module R M'] {v' : α'M'} (f : αα') (l : α →₀ R) :

      Alias of Finsupp.linearCombination_mapDomain.

      @[simp]
      theorem Finsupp.linearCombination_equivMapDomain {α : Type u_1} (R : Type u_5) [Semiring R] {α' : Type u_7} {M' : Type u_8} [AddCommMonoid M'] [Module R M'] {v' : α'M'} (f : α α') (l : α →₀ R) :
      @[deprecated Finsupp.linearCombination_equivMapDomain]
      theorem Finsupp.total_equivMapDomain {α : Type u_1} (R : Type u_5) [Semiring R] {α' : Type u_7} {M' : Type u_8} [AddCommMonoid M'] [Module R M'] {v' : α'M'} (f : α α') (l : α →₀ R) :

      Alias of Finsupp.linearCombination_equivMapDomain.

      A version of Finsupp.range_linearCombination which is useful for going in the other direction

      @[deprecated Finsupp.span_eq_range_linearCombination]
      theorem Finsupp.span_eq_range_total {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] (s : Set M) :

      Alias of Finsupp.span_eq_range_linearCombination.


      A version of Finsupp.range_linearCombination which is useful for going in the other direction

      theorem Finsupp.mem_span_iff_linearCombination {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] (s : Set M) (x : M) :
      x Submodule.span R s ∃ (l : s →₀ R), (Finsupp.linearCombination R Subtype.val) l = x
      @[deprecated Finsupp.mem_span_iff_linearCombination]
      theorem Finsupp.mem_span_iff_total {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] (s : Set M) (x : M) :
      x Submodule.span R s ∃ (l : s →₀ R), (Finsupp.linearCombination R Subtype.val) l = x

      Alias of Finsupp.mem_span_iff_linearCombination.

      theorem Finsupp.mem_span_range_iff_exists_finsupp {α : Type u_1} {M : Type u_2} {R : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] {v : αM} {x : M} :
      x Submodule.span R (Set.range v) ∃ (c : α →₀ R), (c.sum fun (i : α) (a : R) => a v i) = x
      theorem Finsupp.span_image_eq_map_linearCombination {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {v : αM} (s : Set α) :
      @[deprecated Finsupp.span_image_eq_map_linearCombination]
      theorem Finsupp.span_image_eq_map_total {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {v : αM} (s : Set α) :

      Alias of Finsupp.span_image_eq_map_linearCombination.

      theorem Finsupp.mem_span_image_iff_linearCombination {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {v : αM} {s : Set α} {x : M} :
      @[deprecated Finsupp.mem_span_image_iff_linearCombination]
      theorem Finsupp.mem_span_image_iff_total {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {v : αM} {s : Set α} {x : M} :

      Alias of Finsupp.mem_span_image_iff_linearCombination.

      theorem Finsupp.linearCombination_option {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] (v : Option αM) (f : Option α →₀ R) :
      (Finsupp.linearCombination R v) f = f none v none + (Finsupp.linearCombination R (v some)) f.some
      @[deprecated Finsupp.linearCombination_option]
      theorem Finsupp.total_option {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] (v : Option αM) (f : Option α →₀ R) :
      (Finsupp.linearCombination R v) f = f none v none + (Finsupp.linearCombination R (v some)) f.some

      Alias of Finsupp.linearCombination_option.

      theorem Finsupp.linearCombination_linearCombination {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {α : Type u_9} {β : Type u_10} (A : αM) (B : βα →₀ R) (f : β →₀ R) :
      @[deprecated Finsupp.linearCombination_linearCombination]
      theorem Finsupp.total_total {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {α : Type u_9} {β : Type u_10} (A : αM) (B : βα →₀ R) (f : β →₀ R) :

      Alias of Finsupp.linearCombination_linearCombination.

      @[simp]
      theorem Finsupp.linearCombination_fin_zero {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] (f : Fin 0M) :
      @[deprecated Finsupp.linearCombination_fin_zero]
      theorem Finsupp.total_fin_zero {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] (f : Fin 0M) :

      Alias of Finsupp.linearCombination_fin_zero.

      def Finsupp.linearCombinationOn (α : Type u_1) (M : Type u_2) (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] (v : αM) (s : Set α) :
      (Finsupp.supported R R s) →ₗ[R] (Submodule.span R (v '' s))

      Finsupp.linearCombinationOn M v s interprets p : α →₀ R as a linear combination of a subset of the vectors in v, mapping it to the span of those vectors.

      The subset is indicated by a set s : Set α of indices.

      Equations
      Instances For
        @[deprecated Finsupp.linearCombinationOn]
        def Finsupp.totalOn (α : Type u_1) (M : Type u_2) (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] (v : αM) (s : Set α) :
        (Finsupp.supported R R s) →ₗ[R] (Submodule.span R (v '' s))

        Alias of Finsupp.linearCombinationOn.


        Finsupp.linearCombinationOn M v s interprets p : α →₀ R as a linear combination of a subset of the vectors in v, mapping it to the span of those vectors.

        The subset is indicated by a set s : Set α of indices.

        Equations
        Instances For
          theorem Finsupp.linearCombinationOn_range {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {v : αM} (s : Set α) :
          @[deprecated Finsupp.linearCombinationOn_range]
          theorem Finsupp.totalOn_range {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {v : αM} (s : Set α) :

          Alias of Finsupp.linearCombinationOn_range.

          theorem Finsupp.linearCombination_comp {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {α' : Type u_7} {v : αM} (f : α'α) :
          @[deprecated Finsupp.linearCombination_comp]
          theorem Finsupp.total_comp {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {α' : Type u_7} {v : αM} (f : α'α) :

          Alias of Finsupp.linearCombination_comp.

          theorem Finsupp.linearCombination_comapDomain {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {α' : Type u_7} {v : αM} (f : αα') (l : α' →₀ R) (hf : Set.InjOn f (f ⁻¹' l.support)) :
          (Finsupp.linearCombination R v) (Finsupp.comapDomain f l hf) = il.support.preimage f hf, l (f i) v i
          @[deprecated Finsupp.linearCombination_comapDomain]
          theorem Finsupp.total_comapDomain {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {α' : Type u_7} {v : αM} (f : αα') (l : α' →₀ R) (hf : Set.InjOn f (f ⁻¹' l.support)) :
          (Finsupp.linearCombination R v) (Finsupp.comapDomain f l hf) = il.support.preimage f hf, l (f i) v i

          Alias of Finsupp.linearCombination_comapDomain.

          theorem Finsupp.linearCombination_onFinset {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {s : Finset α} {f : αR} (g : αM) (hf : ∀ (a : α), f a 0a s) :
          (Finsupp.linearCombination R g) (Finsupp.onFinset s f hf) = xs, f x g x
          @[deprecated Finsupp.linearCombination_onFinset]
          theorem Finsupp.total_onFinset {α : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {s : Finset α} {f : αR} (g : αM) (hf : ∀ (a : α), f a 0a s) :
          (Finsupp.linearCombination R g) (Finsupp.onFinset s f hf) = xs, f x g x

          Alias of Finsupp.linearCombination_onFinset.

          def Fintype.linearCombination {α : Type u_1} {M : Type u_2} (R : Type u_3) [Fintype α] [Semiring R] [AddCommMonoid M] [Module R M] (S : Type u_4) [Semiring S] [Module S M] [SMulCommClass R S M] :
          (αM) →ₗ[S] (αR) →ₗ[R] M

          Fintype.linearCombination R S v f is the linear combination of vectors in v with weights in f. This variant of Finsupp.linearCombination is defined on fintype indexed vectors.

          This map is linear in v if R is commutative, and always linear in f. See note [bundled maps over different rings] for why separate R and S semirings are used.

          Equations
          • Fintype.linearCombination R S = { toFun := fun (v : αM) => { toFun := fun (f : αR) => i : α, f i v i, map_add' := , map_smul' := }, map_add' := , map_smul' := }
          Instances For
            @[deprecated Fintype.linearCombination]
            def Fintype.total {α : Type u_1} {M : Type u_2} (R : Type u_3) [Fintype α] [Semiring R] [AddCommMonoid M] [Module R M] (S : Type u_4) [Semiring S] [Module S M] [SMulCommClass R S M] :
            (αM) →ₗ[S] (αR) →ₗ[R] M

            Alias of Fintype.linearCombination.


            Fintype.linearCombination R S v f is the linear combination of vectors in v with weights in f. This variant of Finsupp.linearCombination is defined on fintype indexed vectors.

            This map is linear in v if R is commutative, and always linear in f. See note [bundled maps over different rings] for why separate R and S semirings are used.

            Equations
            Instances For
              theorem Fintype.linearCombination_apply {α : Type u_1} {M : Type u_2} (R : Type u_3) [Fintype α] [Semiring R] [AddCommMonoid M] [Module R M] {S : Type u_4} [Semiring S] [Module S M] [SMulCommClass R S M] (v : αM) (f : αR) :
              ((Fintype.linearCombination R S) v) f = i : α, f i v i
              @[deprecated Fintype.linearCombination_apply]
              theorem Fintype.total_apply {α : Type u_1} {M : Type u_2} (R : Type u_3) [Fintype α] [Semiring R] [AddCommMonoid M] [Module R M] {S : Type u_4} [Semiring S] [Module S M] [SMulCommClass R S M] (v : αM) (f : αR) :
              ((Fintype.linearCombination R S) v) f = i : α, f i v i

              Alias of Fintype.linearCombination_apply.

              @[simp]
              theorem Fintype.linearCombination_apply_single {α : Type u_1} {M : Type u_2} (R : Type u_3) [Fintype α] [Semiring R] [AddCommMonoid M] [Module R M] {S : Type u_4} [Semiring S] [Module S M] [SMulCommClass R S M] (v : αM) [DecidableEq α] (i : α) (r : R) :
              @[deprecated Fintype.linearCombination_apply_single]
              theorem Fintype.total_apply_single {α : Type u_1} {M : Type u_2} (R : Type u_3) [Fintype α] [Semiring R] [AddCommMonoid M] [Module R M] {S : Type u_4} [Semiring S] [Module S M] [SMulCommClass R S M] (v : αM) [DecidableEq α] (i : α) (r : R) :

              Alias of Fintype.linearCombination_apply_single.

              theorem Finsupp.linearCombination_eq_fintype_linearCombination_apply {α : Type u_1} {M : Type u_2} (R : Type u_3) [Fintype α] [Semiring R] [AddCommMonoid M] [Module R M] (S : Type u_4) [Semiring S] [Module S M] [SMulCommClass R S M] (v : αM) (x : αR) :
              @[deprecated Finsupp.linearCombination_eq_fintype_linearCombination_apply]
              theorem Finsupp.total_eq_fintype_total_apply {α : Type u_1} {M : Type u_2} (R : Type u_3) [Fintype α] [Semiring R] [AddCommMonoid M] [Module R M] (S : Type u_4) [Semiring S] [Module S M] [SMulCommClass R S M] (v : αM) (x : αR) :

              Alias of Finsupp.linearCombination_eq_fintype_linearCombination_apply.

              theorem Finsupp.linearCombination_eq_fintype_linearCombination {α : Type u_1} {M : Type u_2} (R : Type u_3) [Fintype α] [Semiring R] [AddCommMonoid M] [Module R M] (S : Type u_4) [Semiring S] [Module S M] [SMulCommClass R S M] (v : αM) :
              @[deprecated Finsupp.linearCombination_eq_fintype_linearCombination]
              theorem Finsupp.total_eq_fintype_total {α : Type u_1} {M : Type u_2} (R : Type u_3) [Fintype α] [Semiring R] [AddCommMonoid M] [Module R M] (S : Type u_4) [Semiring S] [Module S M] [SMulCommClass R S M] (v : αM) :

              Alias of Finsupp.linearCombination_eq_fintype_linearCombination.

              @[simp]
              theorem Fintype.range_linearCombination {α : Type u_1} {M : Type u_2} (R : Type u_3) [Fintype α] [Semiring R] [AddCommMonoid M] [Module R M] {S : Type u_4} [Semiring S] [Module S M] [SMulCommClass R S M] (v : αM) :
              @[deprecated Fintype.range_linearCombination]
              theorem Fintype.range_total {α : Type u_1} {M : Type u_2} (R : Type u_3) [Fintype α] [Semiring R] [AddCommMonoid M] [Module R M] {S : Type u_4} [Semiring S] [Module S M] [SMulCommClass R S M] (v : αM) :

              Alias of Fintype.range_linearCombination.

              theorem mem_span_range_iff_exists_fun {α : Type u_1} {M : Type u_2} (R : Type u_3) [Fintype α] [Semiring R] [AddCommMonoid M] [Module R M] {v : αM} {x : M} :
              x Submodule.span R (Set.range v) ∃ (c : αR), i : α, c i v i = x

              An element x lies in the span of v iff it can be written as sum ∑ cᵢ • vᵢ = x.

              theorem top_le_span_range_iff_forall_exists_fun {α : Type u_1} {M : Type u_2} (R : Type u_3) [Fintype α] [Semiring R] [AddCommMonoid M] [Module R M] {v : αM} :
              Submodule.span R (Set.range v) ∀ (x : M), ∃ (c : αR), i : α, c i v i = x

              A family v : α → V is generating V iff every element (x : V) can be written as sum ∑ cᵢ • vᵢ = x.

              @[irreducible]
              def Span.repr (R : Type u_4) {M : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] (w : Set M) (x : (Submodule.span R w)) :
              w →₀ R

              Pick some representation of x : span R w as a linear combination in w, ((Finsupp.mem_span_iff_linearCombination _ _ _).mp x.2).choose

              Equations
              Instances For
                theorem Span.repr_def (R : Type u_4) {M : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] (w : Set M) (x : (Submodule.span R w)) :
                Span.repr R w x = .choose
                @[simp]
                theorem Span.finsupp_linearCombination_repr (R : Type u_1) {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] {w : Set M} (x : (Submodule.span R w)) :
                (Finsupp.linearCombination R Subtype.val) (Span.repr R w x) = x
                @[deprecated Span.finsupp_linearCombination_repr]
                theorem Span.finsupp_total_repr (R : Type u_1) {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] {w : Set M} (x : (Submodule.span R w)) :
                (Finsupp.linearCombination R Subtype.val) (Span.repr R w x) = x

                Alias of Span.finsupp_linearCombination_repr.

                theorem LinearMap.map_finsupp_linearCombination {R : Type u_1} {M : Type u_2} {N : Type u_3} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (f : M →ₗ[R] N) {ι : Type u_4} {g : ιM} (l : ι →₀ R) :
                @[deprecated LinearMap.map_finsupp_linearCombination]
                theorem LinearMap.map_finsupp_total {R : Type u_1} {M : Type u_2} {N : Type u_3} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (f : M →ₗ[R] N) {ι : Type u_4} {g : ιM} (l : ι →₀ R) :

                Alias of LinearMap.map_finsupp_linearCombination.

                theorem mem_span_finset {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] {s : Finset M} {x : M} :
                x Submodule.span R s ∃ (f : MR), is, f i i = x
                theorem mem_span_set {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] {m : M} {s : Set M} :
                m Submodule.span R s ∃ (c : M →₀ R), c.support s (c.sum fun (mi : M) (r : R) => r mi) = m

                An element m ∈ M is contained in the R-submodule spanned by a set s ⊆ M, if and only if m can be written as a finite R-linear combination of elements of s. The implementation uses Finsupp.sum.

                theorem mem_span_set' {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] {m : M} {s : Set M} :
                m Submodule.span R s ∃ (n : ) (f : Fin nR) (g : Fin ns), i : Fin n, f i (g i) = m

                An element m ∈ M is contained in the R-submodule spanned by a set s ⊆ M, if and only if m can be written as a finite R-linear combination of elements of s. The implementation uses a sum indexed by Fin n for some n.

                theorem span_eq_iUnion_nat {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] (s : Set M) :
                (Submodule.span R s) = ⋃ (n : ), (fun (f : Fin nR × M) => i : Fin n, (f i).1 (f i).2) '' {f : Fin nR × M | ∀ (i : Fin n), (f i).2 s}

                The span of a subset s is the union over all n of the set of linear combinations of at most n terms belonging to s.