HepLean Documentation

Mathlib.LinearAlgebra.QuadraticForm.Basic

Quadratic maps #

This file defines quadratic maps on an R-module M, taking values in an R-module N. An N-valued quadratic map on a module M over a commutative ring R is a map Q : M → N such that:

This notion generalizes to commutative semirings using the approach in [izhakian2016][] which requires that there be a (possibly non-unique) companion bilinear map B such that ∀ x y, Q (x + y) = Q x + Q y + B x y. Over a ring, this B is precisely QuadraticMap.polar Q.

To build a QuadraticMap from the polar axioms, use QuadraticMap.ofPolar.

Quadratic maps come with a scalar multiplication, (a • Q) x = a • Q x, and composition with linear maps f, Q.comp f x = Q (f x).

Main definitions #

Main statements #

Notation #

In this file, the variable R is used when a CommSemiring structure is available.

The variable S is used when R itself has a action.

Implementation notes #

While the definition and many results make sense if we drop commutativity assumptions, the correct definition of a quadratic maps in the noncommutative setting would require substantial refactors from the current version, such that $Q(rm) = rQ(m)r^*$ for some suitable conjugation $r^*$.

The Zulip thread has some further discussion.

References #

Tags #

quadratic map, homogeneous polynomial, quadratic polynomial

def QuadraticMap.polar {M : Type u_4} {N : Type u_5} [AddCommGroup M] [AddCommGroup N] (f : MN) (x y : M) :
N

Up to a factor 2, Q.polar is the associated bilinear map for a quadratic map Q.

Source of this name: https://en.wikipedia.org/wiki/Quadratic_form#Generalization

Equations
Instances For
    theorem QuadraticMap.map_add {M : Type u_4} {N : Type u_5} [AddCommGroup M] [AddCommGroup N] (f : MN) (x y : M) :
    f (x + y) = f x + f y + QuadraticMap.polar f x y
    theorem QuadraticMap.polar_add {M : Type u_4} {N : Type u_5} [AddCommGroup M] [AddCommGroup N] (f g : MN) (x y : M) :
    theorem QuadraticMap.polar_neg {M : Type u_4} {N : Type u_5} [AddCommGroup M] [AddCommGroup N] (f : MN) (x y : M) :
    theorem QuadraticMap.polar_smul {S : Type u_1} {M : Type u_4} {N : Type u_5} [AddCommGroup M] [AddCommGroup N] [Monoid S] [DistribMulAction S N] (f : MN) (s : S) (x y : M) :
    theorem QuadraticMap.polar_comm {M : Type u_4} {N : Type u_5} [AddCommGroup M] [AddCommGroup N] (f : MN) (x y : M) :
    theorem QuadraticMap.polar_add_left_iff {M : Type u_4} {N : Type u_5} [AddCommGroup M] [AddCommGroup N] {f : MN} {x x' y : M} :
    QuadraticMap.polar f (x + x') y = QuadraticMap.polar f x y + QuadraticMap.polar f x' y f (x + x' + y) + (f x + f x' + f y) = f (x + x') + f (x' + y) + f (y + x)

    Auxiliary lemma to express bilinearity of QuadraticMap.polar without subtraction.

    theorem QuadraticMap.polar_comp {S : Type u_1} {M : Type u_4} {N : Type u_5} [AddCommGroup M] [AddCommGroup N] {F : Type u_8} [CommRing S] [FunLike F N S] [AddMonoidHomClass F N S] (f : MN) (g : F) (x y : M) :
    structure QuadraticMap (R : Type u) (M : Type v) (N : Type w) [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] :
    Type (max v w)

    A quadratic map on a module.

    For a more familiar constructor when R is a ring, see QuadraticMap.ofPolar.

    • toFun : MN
    • toFun_smul : ∀ (a : R) (x : M), self.toFun (a x) = (a * a) self.toFun x
    • exists_companion' : ∃ (B : LinearMap.BilinMap R M N), ∀ (x y : M), self.toFun (x + y) = self.toFun x + self.toFun y + (B x) y
    Instances For
      @[reducible, inline]
      abbrev QuadraticForm (R : Type u) (M : Type v) [CommSemiring R] [AddCommMonoid M] [Module R M] :
      Type (max u v)

      A quadratic form on a module.

      Equations
      Instances For
        instance QuadraticMap.instFunLike {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] :
        FunLike (QuadraticMap R M N) M N
        Equations
        • QuadraticMap.instFunLike = { coe := QuadraticMap.toFun, coe_injective' := }
        @[simp]
        theorem QuadraticMap.toFun_eq_coe {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (Q : QuadraticMap R M N) :
        Q.toFun = Q

        The simp normal form for a quadratic map is DFunLike.coe, not toFun.

        theorem QuadraticMap.ext {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] {Q Q' : QuadraticMap R M N} (H : ∀ (x : M), Q x = Q' x) :
        Q = Q'
        theorem QuadraticMap.congr_fun {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] {Q Q' : QuadraticMap R M N} (h : Q = Q') (x : M) :
        Q x = Q' x
        def QuadraticMap.copy {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (Q : QuadraticMap R M N) (Q' : MN) (h : Q' = Q) :

        Copy of a QuadraticMap with a new toFun equal to the old one. Useful to fix definitional equalities.

        Equations
        • Q.copy Q' h = { toFun := Q', toFun_smul := , exists_companion' := }
        Instances For
          @[simp]
          theorem QuadraticMap.coe_copy {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (Q : QuadraticMap R M N) (Q' : MN) (h : Q' = Q) :
          (Q.copy Q' h) = Q'
          theorem QuadraticMap.copy_eq {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (Q : QuadraticMap R M N) (Q' : MN) (h : Q' = Q) :
          Q.copy Q' h = Q
          theorem QuadraticMap.map_smul {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (Q : QuadraticMap R M N) (a : R) (x : M) :
          Q (a x) = (a * a) Q x
          theorem QuadraticMap.exists_companion {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (Q : QuadraticMap R M N) :
          ∃ (B : LinearMap.BilinMap R M N), ∀ (x y : M), Q (x + y) = Q x + Q y + (B x) y
          theorem QuadraticMap.map_add_add_add_map {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (Q : QuadraticMap R M N) (x y z : M) :
          Q (x + y + z) + (Q x + Q y + Q z) = Q (x + y) + Q (y + z) + Q (z + x)
          theorem QuadraticMap.map_add_self {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (Q : QuadraticMap R M N) (x : M) :
          Q (x + x) = 4 Q x
          theorem QuadraticMap.map_zero {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (Q : QuadraticMap R M N) :
          Q 0 = 0
          instance QuadraticMap.zeroHomClass {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] :
          Equations
          • =
          theorem QuadraticMap.map_smul_of_tower {S : Type u_1} {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (Q : QuadraticMap R M N) [CommSemiring S] [Algebra S R] [Module S M] [IsScalarTower S R M] [Module S N] [IsScalarTower S R N] (a : S) (x : M) :
          Q (a x) = (a * a) Q x
          @[simp]
          theorem QuadraticMap.map_neg {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (Q : QuadraticMap R M N) (x : M) :
          Q (-x) = Q x
          theorem QuadraticMap.map_sub {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (Q : QuadraticMap R M N) (x y : M) :
          Q (x - y) = Q (y - x)
          @[simp]
          theorem QuadraticMap.polar_zero_left {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (Q : QuadraticMap R M N) (y : M) :
          QuadraticMap.polar (⇑Q) 0 y = 0
          @[simp]
          theorem QuadraticMap.polar_add_left {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (Q : QuadraticMap R M N) (x x' y : M) :
          QuadraticMap.polar (⇑Q) (x + x') y = QuadraticMap.polar (⇑Q) x y + QuadraticMap.polar (⇑Q) x' y
          @[simp]
          theorem QuadraticMap.polar_smul_left {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (Q : QuadraticMap R M N) (a : R) (x y : M) :
          QuadraticMap.polar (⇑Q) (a x) y = a QuadraticMap.polar (⇑Q) x y
          @[simp]
          theorem QuadraticMap.polar_neg_left {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (Q : QuadraticMap R M N) (x y : M) :
          QuadraticMap.polar (⇑Q) (-x) y = -QuadraticMap.polar (⇑Q) x y
          @[simp]
          theorem QuadraticMap.polar_sub_left {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (Q : QuadraticMap R M N) (x x' y : M) :
          QuadraticMap.polar (⇑Q) (x - x') y = QuadraticMap.polar (⇑Q) x y - QuadraticMap.polar (⇑Q) x' y
          @[simp]
          theorem QuadraticMap.polar_zero_right {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (Q : QuadraticMap R M N) (y : M) :
          QuadraticMap.polar (⇑Q) y 0 = 0
          @[simp]
          theorem QuadraticMap.polar_add_right {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (Q : QuadraticMap R M N) (x y y' : M) :
          QuadraticMap.polar (⇑Q) x (y + y') = QuadraticMap.polar (⇑Q) x y + QuadraticMap.polar (⇑Q) x y'
          @[simp]
          theorem QuadraticMap.polar_smul_right {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (Q : QuadraticMap R M N) (a : R) (x y : M) :
          QuadraticMap.polar (⇑Q) x (a y) = a QuadraticMap.polar (⇑Q) x y
          @[simp]
          theorem QuadraticMap.polar_neg_right {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (Q : QuadraticMap R M N) (x y : M) :
          QuadraticMap.polar (⇑Q) x (-y) = -QuadraticMap.polar (⇑Q) x y
          @[simp]
          theorem QuadraticMap.polar_sub_right {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (Q : QuadraticMap R M N) (x y y' : M) :
          QuadraticMap.polar (⇑Q) x (y - y') = QuadraticMap.polar (⇑Q) x y - QuadraticMap.polar (⇑Q) x y'
          @[simp]
          theorem QuadraticMap.polar_self {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (Q : QuadraticMap R M N) (x : M) :
          QuadraticMap.polar (⇑Q) x x = 2 Q x
          def QuadraticMap.polarBilin {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (Q : QuadraticMap R M N) :

          QuadraticMap.polar as a bilinear map

          Equations
          Instances For
            @[simp]
            theorem QuadraticMap.polarBilin_apply_apply {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (Q : QuadraticMap R M N) (m y : M) :
            (Q.polarBilin m) y = QuadraticMap.polar (⇑Q) m y
            @[simp]
            theorem QuadraticMap.polar_smul_left_of_tower {S : Type u_1} {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (Q : QuadraticMap R M N) [CommSemiring S] [Algebra S R] [Module S M] [IsScalarTower S R M] [Module S N] [IsScalarTower S R N] (a : S) (x y : M) :
            QuadraticMap.polar (⇑Q) (a x) y = a QuadraticMap.polar (⇑Q) x y
            @[simp]
            theorem QuadraticMap.polar_smul_right_of_tower {S : Type u_1} {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (Q : QuadraticMap R M N) [CommSemiring S] [Algebra S R] [Module S M] [IsScalarTower S R M] [Module S N] [IsScalarTower S R N] (a : S) (x y : M) :
            QuadraticMap.polar (⇑Q) x (a y) = a QuadraticMap.polar (⇑Q) x y
            def QuadraticMap.ofPolar {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (toFun : MN) (toFun_smul : ∀ (a : R) (x : M), toFun (a x) = (a * a) toFun x) (polar_add_left : ∀ (x x' y : M), QuadraticMap.polar toFun (x + x') y = QuadraticMap.polar toFun x y + QuadraticMap.polar toFun x' y) (polar_smul_left : ∀ (a : R) (x y : M), QuadraticMap.polar toFun (a x) y = a QuadraticMap.polar toFun x y) :

            An alternative constructor to QuadraticMap.mk, for rings where polar can be used.

            Equations
            • QuadraticMap.ofPolar toFun toFun_smul polar_add_left polar_smul_left = { toFun := toFun, toFun_smul := toFun_smul, exists_companion' := }
            Instances For
              @[simp]
              theorem QuadraticMap.ofPolar_apply {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (toFun : MN) (toFun_smul : ∀ (a : R) (x : M), toFun (a x) = (a * a) toFun x) (polar_add_left : ∀ (x x' y : M), QuadraticMap.polar toFun (x + x') y = QuadraticMap.polar toFun x y + QuadraticMap.polar toFun x' y) (polar_smul_left : ∀ (a : R) (x y : M), QuadraticMap.polar toFun (a x) y = a QuadraticMap.polar toFun x y) (a✝ : M) :
              (QuadraticMap.ofPolar toFun toFun_smul polar_add_left polar_smul_left) a✝ = toFun a✝
              theorem QuadraticMap.choose_exists_companion {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (Q : QuadraticMap R M N) :
              .choose = Q.polarBilin

              In a ring the companion bilinear form is unique and equal to QuadraticMap.polar.

              theorem QuadraticMap.map_sum {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] {ι : Type u_8} [DecidableEq ι] (Q : QuadraticMap R M N) (s : Finset ι) (f : ιM) :
              Q (∑ is, f i) = is, Q (f i) + ijFinset.filter (fun (ij : Sym2 ι) => ¬ij.IsDiag) s.sym2, Sym2.lift fun (i j : ι) => QuadraticMap.polar (⇑Q) (f i) (f j), ij
              theorem QuadraticMap.map_sum' {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] {ι : Type u_8} (Q : QuadraticMap R M N) (s : Finset ι) (f : ιM) :
              Q (∑ is, f i) = ijs.sym2, Sym2.lift fun (i j : ι) => QuadraticMap.polar (⇑Q) (f i) (f j), ij - is, Q (f i)
              instance QuadraticMap.instSMul {S : Type u_1} {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [Monoid S] [DistribMulAction S N] [SMulCommClass S R N] :
              SMul S (QuadraticMap R M N)

              QuadraticMap R M N inherits the scalar action from any algebra over R.

              This provides an R-action via Algebra.id.

              Equations
              • QuadraticMap.instSMul = { smul := fun (a : S) (Q : QuadraticMap R M N) => { toFun := a Q, toFun_smul := , exists_companion' := } }
              @[simp]
              theorem QuadraticMap.coeFn_smul {S : Type u_1} {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [Monoid S] [DistribMulAction S N] [SMulCommClass S R N] (a : S) (Q : QuadraticMap R M N) :
              (a Q) = a Q
              @[simp]
              theorem QuadraticMap.smul_apply {S : Type u_1} {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [Monoid S] [DistribMulAction S N] [SMulCommClass S R N] (a : S) (Q : QuadraticMap R M N) (x : M) :
              (a Q) x = a Q x
              instance QuadraticMap.instSMulCommClass {S : Type u_1} {T : Type u_2} {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [Monoid S] [Monoid T] [DistribMulAction S N] [DistribMulAction T N] [SMulCommClass S R N] [SMulCommClass T R N] [SMulCommClass S T N] :
              Equations
              • =
              instance QuadraticMap.instIsScalarTower {S : Type u_1} {T : Type u_2} {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [Monoid S] [Monoid T] [DistribMulAction S N] [DistribMulAction T N] [SMulCommClass S R N] [SMulCommClass T R N] [SMul S T] [IsScalarTower S T N] :
              Equations
              • =
              instance QuadraticMap.instZero {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] :
              Equations
              • QuadraticMap.instZero = { zero := { toFun := fun (x : M) => 0, toFun_smul := , exists_companion' := } }
              @[simp]
              theorem QuadraticMap.coeFn_zero {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] :
              0 = 0
              @[simp]
              theorem QuadraticMap.zero_apply {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (x : M) :
              0 x = 0
              instance QuadraticMap.instInhabited {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] :
              Equations
              • QuadraticMap.instInhabited = { default := 0 }
              instance QuadraticMap.instAdd {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] :
              Equations
              • QuadraticMap.instAdd = { add := fun (Q Q' : QuadraticMap R M N) => { toFun := Q + Q', toFun_smul := , exists_companion' := } }
              @[simp]
              theorem QuadraticMap.coeFn_add {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (Q Q' : QuadraticMap R M N) :
              (Q + Q') = Q + Q'
              @[simp]
              theorem QuadraticMap.add_apply {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (Q Q' : QuadraticMap R M N) (x : M) :
              (Q + Q') x = Q x + Q' x
              instance QuadraticMap.instAddCommMonoid {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] :
              Equations
              def QuadraticMap.coeFnAddMonoidHom {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] :
              QuadraticMap R M N →+ MN

              @CoeFn (QuadraticMap R M) as an AddMonoidHom.

              This API mirrors AddMonoidHom.coeFn.

              Equations
              • QuadraticMap.coeFnAddMonoidHom = { toFun := DFunLike.coe, map_zero' := , map_add' := }
              Instances For
                @[simp]
                theorem QuadraticMap.coeFnAddMonoidHom_apply {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (a✝ : QuadraticMap R M N) (a : M) :
                QuadraticMap.coeFnAddMonoidHom a✝ a = a✝ a
                def QuadraticMap.evalAddMonoidHom {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (m : M) :

                Evaluation on a particular element of the module M is an additive map on quadratic maps.

                Equations
                Instances For
                  @[simp]
                  theorem QuadraticMap.evalAddMonoidHom_apply {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (m : M) (a✝ : QuadraticMap R M N) :
                  @[simp]
                  theorem QuadraticMap.coeFn_sum {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] {ι : Type u_8} (Q : ιQuadraticMap R M N) (s : Finset ι) :
                  (∑ is, Q i) = is, (Q i)
                  @[simp]
                  theorem QuadraticMap.sum_apply {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] {ι : Type u_8} (Q : ιQuadraticMap R M N) (s : Finset ι) (x : M) :
                  (∑ is, Q i) x = is, (Q i) x
                  Equations
                  instance QuadraticMap.instModuleOfSMulCommClass {S : Type u_1} {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [Semiring S] [Module S N] [SMulCommClass S R N] :
                  Equations
                  • QuadraticMap.instModuleOfSMulCommClass = Module.mk
                  instance QuadraticMap.instNeg {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] :
                  Equations
                  • QuadraticMap.instNeg = { neg := fun (Q : QuadraticMap R M N) => { toFun := -Q, toFun_smul := , exists_companion' := } }
                  @[simp]
                  theorem QuadraticMap.coeFn_neg {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (Q : QuadraticMap R M N) :
                  (-Q) = -Q
                  @[simp]
                  theorem QuadraticMap.neg_apply {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (Q : QuadraticMap R M N) (x : M) :
                  (-Q) x = -Q x
                  instance QuadraticMap.instSub {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] :
                  Equations
                  • QuadraticMap.instSub = { sub := fun (Q Q' : QuadraticMap R M N) => (Q + -Q').copy (Q - Q') }
                  @[simp]
                  theorem QuadraticMap.coeFn_sub {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (Q Q' : QuadraticMap R M N) :
                  (Q - Q') = Q - Q'
                  @[simp]
                  theorem QuadraticMap.sub_apply {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (Q Q' : QuadraticMap R M N) (x : M) :
                  (Q - Q') x = Q x - Q' x
                  instance QuadraticMap.instAddCommGroup {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] :
                  Equations
                  def QuadraticMap.restrictScalars {S : Type u_1} {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [Module S M] [Module S N] [Algebra S R] [IsScalarTower S R M] [IsScalarTower S R N] (Q : QuadraticMap R M N) :

                  If Q : M → N is a quadratic map of R-modules and R is an S-algebra, then the restriction of scalars is a quadratic map of S-modules.

                  Equations
                  • Q.restrictScalars = { toFun := fun (x : M) => Q x, toFun_smul := , exists_companion' := }
                  Instances For
                    @[simp]
                    theorem QuadraticMap.restrictScalars_apply {S : Type u_1} {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [Module S M] [Module S N] [Algebra S R] [IsScalarTower S R M] [IsScalarTower S R N] (Q : QuadraticMap R M N) (x : M) :
                    Q.restrictScalars x = Q x
                    def QuadraticMap.comp {R : Type u_3} {M : Type u_4} {N : Type u_5} {P : Type u_6} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] (Q : QuadraticMap R N P) (f : M →ₗ[R] N) :

                    Compose the quadratic map with a linear function on the right.

                    Equations
                    • Q.comp f = { toFun := fun (x : M) => Q (f x), toFun_smul := , exists_companion' := }
                    Instances For
                      @[simp]
                      theorem QuadraticMap.comp_apply {R : Type u_3} {M : Type u_4} {N : Type u_5} {P : Type u_6} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] (Q : QuadraticMap R N P) (f : M →ₗ[R] N) (x : M) :
                      (Q.comp f) x = Q (f x)
                      def LinearMap.compQuadraticMap {R : Type u_3} {M : Type u_4} {N : Type u_5} {P : Type u_6} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] (f : N →ₗ[R] P) (Q : QuadraticMap R M N) :

                      Compose a quadratic map with a linear function on the left.

                      Equations
                      • f.compQuadraticMap Q = { toFun := fun (x : M) => f (Q x), toFun_smul := , exists_companion' := }
                      Instances For
                        @[simp]
                        theorem LinearMap.compQuadraticMap_apply {R : Type u_3} {M : Type u_4} {N : Type u_5} {P : Type u_6} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] (f : N →ₗ[R] P) (Q : QuadraticMap R M N) (x : M) :
                        (f.compQuadraticMap Q) x = f (Q x)
                        def LinearMap.compQuadraticMap' {S : Type u_1} {R : Type u_3} {M : Type u_4} {N : Type u_5} {P : Type u_6} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [CommSemiring S] [Algebra S R] [Module S N] [Module S M] [IsScalarTower S R N] [IsScalarTower S R M] [Module S P] (f : N →ₗ[S] P) (Q : QuadraticMap R M N) :

                        Compose a quadratic map with a linear function on the left.

                        Equations
                        • f.compQuadraticMap' Q = f.compQuadraticMap Q.restrictScalars
                        Instances For
                          @[simp]
                          theorem LinearMap.compQuadraticMap'_apply {S : Type u_1} {R : Type u_3} {M : Type u_4} {N : Type u_5} {P : Type u_6} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [CommSemiring S] [Algebra S R] [Module S N] [Module S M] [IsScalarTower S R N] [IsScalarTower S R M] [Module S P] (f : N →ₗ[S] P) (Q : QuadraticMap R M N) (x : M) :
                          (f.compQuadraticMap' Q) x = f (Q x)
                          def LinearEquiv.congrQuadraticMap {R : Type u_3} {M : Type u_4} {N : Type u_5} {P : Type u_6} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] (e : N ≃ₗ[R] P) :

                          When N and P are equivalent, quadratic maps on M into N are equivalent to quadratic maps on M into P.

                          See LinearMap.BilinMap.congr₂ for the bilinear map version.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            @[simp]
                            theorem LinearEquiv.congrQuadraticMap_symm_apply {R : Type u_3} {M : Type u_4} {N : Type u_5} {P : Type u_6} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] (e : N ≃ₗ[R] P) (Q : QuadraticMap R M P) :
                            e.congrQuadraticMap.symm Q = (↑e.symm).compQuadraticMap Q
                            @[simp]
                            theorem LinearEquiv.congrQuadraticMap_apply {R : Type u_3} {M : Type u_4} {N : Type u_5} {P : Type u_6} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] (e : N ≃ₗ[R] P) (Q : QuadraticMap R M N) :
                            e.congrQuadraticMap Q = (↑e).compQuadraticMap Q
                            @[simp]
                            theorem LinearEquiv.congrQuadraticMap_refl {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] :
                            (LinearEquiv.refl R N).congrQuadraticMap = LinearEquiv.refl R (QuadraticMap R M N)
                            @[simp]
                            theorem LinearEquiv.congrQuadraticMap_symm {R : Type u_3} {M : Type u_4} {N : Type u_5} {P : Type u_6} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] (e : N ≃ₗ[R] P) :
                            e.congrQuadraticMap.symm = e.symm.congrQuadraticMap
                            def QuadraticMap.linMulLin {R : Type u_3} {M : Type u_4} {A : Type u_7} [CommSemiring R] [NonUnitalNonAssocSemiring A] [AddCommMonoid M] [Module R M] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] (f g : M →ₗ[R] A) :

                            The product of linear maps into an R-algebra is a quadratic map.

                            Equations
                            Instances For
                              @[simp]
                              theorem QuadraticMap.linMulLin_apply {R : Type u_3} {M : Type u_4} {A : Type u_7} [CommSemiring R] [NonUnitalNonAssocSemiring A] [AddCommMonoid M] [Module R M] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] (f g : M →ₗ[R] A) (x : M) :
                              (QuadraticMap.linMulLin f g) x = f x * g x
                              @[simp]
                              theorem QuadraticMap.linMulLin_comp {R : Type u_3} {M : Type u_4} {A : Type u_7} [CommSemiring R] [NonUnitalNonAssocSemiring A] [AddCommMonoid M] [Module R M] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] {N' : Type u_8} [AddCommMonoid N'] [Module R N'] (f g : M →ₗ[R] A) (h : N' →ₗ[R] M) :
                              (QuadraticMap.linMulLin f g).comp h = QuadraticMap.linMulLin (f ∘ₗ h) (g ∘ₗ h)

                              sq is the quadratic map sending the vector x : A to x * x

                              Equations
                              Instances For
                                @[simp]
                                theorem QuadraticMap.sq_apply {R : Type u_3} {A : Type u_7} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] (a : A) :
                                QuadraticMap.sq a = a * a
                                def QuadraticMap.proj {R : Type u_3} {A : Type u_7} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] {n : Type u_9} (i j : n) :
                                QuadraticMap R (nA) A

                                proj i j is the quadratic map sending the vector x : n → R to x i * x j

                                Equations
                                Instances For
                                  @[simp]
                                  theorem QuadraticMap.proj_apply {R : Type u_3} {A : Type u_7} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] {n : Type u_9} (i j : n) (x : nA) :
                                  (QuadraticMap.proj i j) x = x i * x j

                                  Associated bilinear maps #

                                  If multiplication by 2 is invertible on the target module N of QuadraticMap R M N, then there is a linear bijection QuadraticMap.associated between quadratic maps Q over R from M to N and symmetric bilinear maps B : M →ₗ[R] M →ₗ[R] → N such that BilinMap.toQuadraticMap B = Q (see QuadraticMap.associated_rightInverse). The associated bilinear map is half Q.polarBilin (see QuadraticMap.two_nsmul_associated); this is where the invertibility condition comes from. We spell the condition as [Invertible (2 : Module.End R N)].

                                  Note that this makes the bijection available in more cases than the simpler condition Invertible (2 : R), e.g., when R = ℤ and N = ℝ.

                                  def LinearMap.BilinMap.toQuadraticMap {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (B : LinearMap.BilinMap R M N) :

                                  A bilinear map gives a quadratic map by applying the argument twice.

                                  Equations
                                  • B.toQuadraticMap = { toFun := fun (x : M) => (B x) x, toFun_smul := , exists_companion' := }
                                  Instances For
                                    @[simp]
                                    theorem LinearMap.BilinMap.toQuadraticMap_apply {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (B : LinearMap.BilinMap R M N) (x : M) :
                                    B.toQuadraticMap x = (B x) x
                                    theorem LinearMap.BilinMap.toQuadraticMap_comp_same {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] {N' : Type u_8} [AddCommMonoid N'] [Module R N'] (B : LinearMap.BilinMap R M N) (f : N' →ₗ[R] M) :
                                    @[simp]
                                    theorem LinearMap.BilinMap.toQuadraticMap_add {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (B₁ B₂ : LinearMap.BilinMap R M N) :
                                    (B₁ + B₂).toQuadraticMap = B₁.toQuadraticMap + B₂.toQuadraticMap
                                    @[simp]
                                    theorem LinearMap.BilinMap.toQuadraticMap_smul {S : Type u_1} {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [Monoid S] [DistribMulAction S N] [SMulCommClass S R N] [SMulCommClass R S N] (a : S) (B : LinearMap.BilinMap R M N) :
                                    (a B).toQuadraticMap = a B.toQuadraticMap

                                    LinearMap.BilinMap.toQuadraticMap as an additive homomorphism

                                    Equations
                                    Instances For
                                      def LinearMap.BilinMap.toQuadraticMapLinearMap (S : Type u_1) (R : Type u_3) (M : Type u_4) {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [Semiring S] [Module S N] [SMulCommClass S R N] [SMulCommClass R S N] :

                                      LinearMap.BilinMap.toQuadraticMap as a linear map

                                      Equations
                                      Instances For
                                        @[simp]
                                        theorem LinearMap.BilinMap.toQuadraticMapLinearMap_apply_apply (S : Type u_1) (R : Type u_3) (M : Type u_4) {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [Semiring S] [Module S N] [SMulCommClass S R N] [SMulCommClass R S N] (B : LinearMap.BilinMap R M N) (x : M) :
                                        @[simp]
                                        theorem LinearMap.BilinMap.toQuadraticMap_list_sum {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (B : List (LinearMap.BilinMap R M N)) :
                                        B.sum.toQuadraticMap = (List.map LinearMap.BilinMap.toQuadraticMap B).sum
                                        @[simp]
                                        theorem LinearMap.BilinMap.toQuadraticMap_multiset_sum {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (B : Multiset (LinearMap.BilinMap R M N)) :
                                        B.sum.toQuadraticMap = (Multiset.map LinearMap.BilinMap.toQuadraticMap B).sum
                                        @[simp]
                                        theorem LinearMap.BilinMap.toQuadraticMap_sum {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] {ι : Type u_9} (s : Finset ι) (B : ιLinearMap.BilinMap R M N) :
                                        (∑ is, B i).toQuadraticMap = is, (B i).toQuadraticMap
                                        @[simp]
                                        theorem LinearMap.BilinMap.toQuadraticMap_eq_zero {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] {B : LinearMap.BilinMap R M N} :
                                        B.toQuadraticMap = 0 LinearMap.IsAlt B
                                        @[simp]
                                        theorem LinearMap.BilinMap.toQuadraticMap_neg {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (B : LinearMap.BilinMap R M N) :
                                        (-B).toQuadraticMap = -B.toQuadraticMap
                                        @[simp]
                                        theorem LinearMap.BilinMap.toQuadraticMap_sub {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (B₁ B₂ : LinearMap.BilinMap R M N) :
                                        (B₁ - B₂).toQuadraticMap = B₁.toQuadraticMap - B₂.toQuadraticMap
                                        theorem LinearMap.BilinMap.polar_toQuadraticMap {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] {B : LinearMap.BilinMap R M N} (x y : M) :
                                        QuadraticMap.polar (⇑B.toQuadraticMap) x y = (B x) y + (B y) x
                                        theorem LinearMap.BilinMap.polarBilin_toQuadraticMap {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] {B : LinearMap.BilinMap R M N} :
                                        B.toQuadraticMap.polarBilin = B + LinearMap.flip B
                                        @[simp]
                                        theorem QuadraticMap.toQuadraticMap_polarBilin {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (Q : QuadraticMap R M N) :
                                        Q.polarBilin.toQuadraticMap = 2 Q
                                        theorem QuadraticMap.polarBilin_injective {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (h : IsUnit 2) :
                                        Function.Injective QuadraticMap.polarBilin
                                        theorem QuadraticMap.polarBilin_comp {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] {N' : Type u_8} [AddCommGroup N'] [Module R N'] (Q : QuadraticMap R N' N) (f : M →ₗ[R] N') :
                                        (Q.comp f).polarBilin = LinearMap.compl₁₂ Q.polarBilin f f
                                        theorem LinearMap.compQuadraticMap_polar {S : Type u_1} {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] {N' : Type u_8} [AddCommGroup N'] [CommSemiring S] [Algebra S R] [Module S N] [Module S N'] [IsScalarTower S R N] [Module S M] [IsScalarTower S R M] (f : N →ₗ[S] N') (Q : QuadraticMap R M N) (x y : M) :
                                        QuadraticMap.polar (⇑(f.compQuadraticMap' Q)) x y = f (QuadraticMap.polar (⇑Q) x y)
                                        theorem LinearMap.compQuadraticMap_polarBilin {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] {N' : Type u_8} [AddCommGroup N'] [Module R N'] (f : N →ₗ[R] N') (Q : QuadraticMap R M N) :
                                        (f.compQuadraticMap' Q).polarBilin = LinearMap.compr₂ Q.polarBilin f

                                        If 2 is invertible in R, then it is also invertible in End R M.

                                        Equations
                                        • QuadraticMap.instInvertibleEndOfNat = { invOf := 2, 1, invOf_mul_self := , mul_invOf_self := }
                                        @[simp]
                                        theorem QuadraticMap.half_moduleEnd_apply_eq_half_smul {R : Type u_3} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] [Invertible 2] (x : M) :
                                        2 x = 2 x

                                        If 2 is invertible in R, then applying the inverse of 2 in End R M to an element of M is the same as multiplying by the inverse of 2 in R.

                                        def QuadraticMap.associatedHom (S : Type u_1) {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [CommSemiring S] [Algebra S R] [Module S N] [IsScalarTower S R N] [Invertible 2] :

                                        associatedHom is the map that sends a quadratic map on a module M over R to its associated symmetric bilinear map. As provided here, this has the structure of an S-linear map where S is a commutative ring and R is an S-algebra.

                                        Over a commutative ring, use QuadraticMap.associated, which gives an R-linear map. Over a general ring with no nontrivial distinguished commutative subring, use QuadraticMap.associated', which gives an additive homomorphism (or more precisely a -linear map.)

                                        Equations
                                        Instances For
                                          @[simp]
                                          theorem QuadraticMap.associated_apply (S : Type u_1) {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [CommSemiring S] [Algebra S R] [Module S N] [IsScalarTower S R N] [Invertible 2] (Q : QuadraticMap R M N) (x y : M) :
                                          (((QuadraticMap.associatedHom S) Q) x) y = 2 (Q (x + y) - Q x - Q y)
                                          @[simp]
                                          theorem QuadraticMap.two_nsmul_associated (S : Type u_1) {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [CommSemiring S] [Algebra S R] [Module S N] [IsScalarTower S R N] [Invertible 2] (Q : QuadraticMap R M N) :
                                          2 (QuadraticMap.associatedHom S) Q = Q.polarBilin

                                          Twice the associated bilinear map of Q is the same as the polar of Q.

                                          theorem QuadraticMap.associated_flip (S : Type u_1) {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [CommSemiring S] [Algebra S R] [Module S N] [IsScalarTower S R N] [Invertible 2] (Q : QuadraticMap R M N) :

                                          A version of QuadraticMap.associated_isSymm for general targets (using flip because IsSymm does not apply here).

                                          @[simp]
                                          theorem QuadraticMap.associated_comp (S : Type u_1) {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [CommSemiring S] [Algebra S R] [Module S N] [IsScalarTower S R N] [Invertible 2] (Q : QuadraticMap R M N) {N' : Type u_8} [AddCommGroup N'] [Module R N'] (f : N' →ₗ[R] M) :
                                          theorem QuadraticMap.associated_toQuadraticMap (S : Type u_1) {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [CommSemiring S] [Algebra S R] [Module S N] [IsScalarTower S R N] [Invertible 2] (B : LinearMap.BilinMap R M N) (x y : M) :
                                          (((QuadraticMap.associatedHom S) B.toQuadraticMap) x) y = 2 ((B x) y + (B y) x)
                                          theorem QuadraticMap.associated_left_inverse (S : Type u_1) {R : Type u_3} {M : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [CommSemiring S] [Algebra S R] [Invertible 2] {B₁ : LinearMap.BilinMap R M R} (h : LinearMap.IsSymm B₁) :
                                          (QuadraticMap.associatedHom S) B₁.toQuadraticMap = B₁
                                          theorem QuadraticMap.associated_left_inverse' (S : Type u_1) {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [CommSemiring S] [Algebra S R] [Module S N] [IsScalarTower S R N] [Invertible 2] {B₁ : LinearMap.BilinMap R M N} (hB₁ : LinearMap.flip B₁ = B₁) :
                                          (QuadraticMap.associatedHom S) B₁.toQuadraticMap = B₁

                                          A version of QuadraticMap.associated_left_inverse for general targets.

                                          theorem QuadraticMap.associated_eq_self_apply (S : Type u_1) {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [CommSemiring S] [Algebra S R] [Module S N] [IsScalarTower S R N] [Invertible 2] (Q : QuadraticMap R M N) (x : M) :
                                          (((QuadraticMap.associatedHom S) Q) x) x = Q x
                                          theorem QuadraticMap.toQuadraticMap_associated (S : Type u_1) {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [CommSemiring S] [Algebra S R] [Module S N] [IsScalarTower S R N] [Invertible 2] (Q : QuadraticMap R M N) :
                                          ((QuadraticMap.associatedHom S) Q).toQuadraticMap = Q
                                          theorem QuadraticMap.associated_rightInverse (S : Type u_1) {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [CommSemiring S] [Algebra S R] [Module S N] [IsScalarTower S R N] [Invertible 2] :
                                          Function.RightInverse (⇑(QuadraticMap.associatedHom S)) LinearMap.BilinMap.toQuadraticMap
                                          @[reducible, inline]
                                          abbrev QuadraticMap.associated' {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [Invertible 2] :

                                          associated' is the -linear map that sends a quadratic form on a module M over R to its associated symmetric bilinear form.

                                          Equations
                                          Instances For
                                            instance QuadraticMap.canLift {R : Type u_3} {M : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [Invertible 2] :

                                            Symmetric bilinear forms can be lifted to quadratic forms

                                            Equations
                                            • =
                                            instance QuadraticMap.canLift' {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [Invertible 2] :

                                            Symmetric bilinear maps can be lifted to quadratic maps

                                            Equations
                                            • =
                                            theorem QuadraticMap.exists_quadraticMap_ne_zero {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [Invertible 2] {Q : QuadraticMap R M N} (hB₁ : QuadraticMap.associated' Q 0) :
                                            ∃ (x : M), Q x 0

                                            There exists a non-null vector with respect to any quadratic form Q whose associated bilinear form is non-zero, i.e. there exists x such that Q x ≠ 0.

                                            @[deprecated QuadraticMap.exists_quadraticMap_ne_zero]
                                            theorem QuadraticMap.exists_quadraticForm_ne_zero {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [Invertible 2] {Q : QuadraticMap R M N} (hB₁ : QuadraticMap.associated' Q 0) :
                                            ∃ (x : M), Q x 0

                                            Alias of QuadraticMap.exists_quadraticMap_ne_zero.


                                            There exists a non-null vector with respect to any quadratic form Q whose associated bilinear form is non-zero, i.e. there exists x such that Q x ≠ 0.

                                            @[reducible, inline]
                                            abbrev QuadraticMap.associated {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [Invertible 2] :

                                            associated is the linear map that sends a quadratic map over a commutative ring to its associated symmetric bilinear map.

                                            Equations
                                            Instances For
                                              theorem QuadraticMap.coe_associatedHom (S : Type u_1) {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring S] [CommRing R] [AddCommGroup M] [Algebra S R] [Module R M] [AddCommGroup N] [Module R N] [Module S N] [IsScalarTower S R N] [Invertible 2] :
                                              (QuadraticMap.associatedHom S) = QuadraticMap.associated
                                              @[simp]
                                              theorem QuadraticMap.associated_linMulLin {R : Type u_3} {M : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [Invertible 2] (f g : M →ₗ[R] R) :
                                              QuadraticMap.associated (QuadraticMap.linMulLin f g) = 2 ((LinearMap.mul R R).compl₁₂ f g + (LinearMap.mul R R).compl₁₂ g f)
                                              @[simp]
                                              theorem QuadraticMap.associated_sq {R : Type u_3} [CommRing R] [Invertible 2] :
                                              QuadraticMap.associated QuadraticMap.sq = LinearMap.mul R R

                                              Orthogonality #

                                              def QuadraticMap.IsOrtho {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (Q : QuadraticMap R M N) (x y : M) :

                                              The proposition that two elements of a quadratic map space are orthogonal.

                                              Equations
                                              • Q.IsOrtho x y = (Q (x + y) = Q x + Q y)
                                              Instances For
                                                theorem QuadraticMap.isOrtho_def {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] {Q : QuadraticMap R M N} {x y : M} :
                                                Q.IsOrtho x y Q (x + y) = Q x + Q y
                                                theorem QuadraticMap.IsOrtho.all {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (x y : M) :
                                                theorem QuadraticMap.IsOrtho.zero_left {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] {Q : QuadraticMap R M N} (x : M) :
                                                Q.IsOrtho 0 x
                                                theorem QuadraticMap.IsOrtho.zero_right {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] {Q : QuadraticMap R M N} (x : M) :
                                                Q.IsOrtho x 0
                                                theorem QuadraticMap.ne_zero_of_not_isOrtho_self {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] {Q : QuadraticMap R M N} (x : M) (hx₁ : ¬Q.IsOrtho x x) :
                                                x 0
                                                theorem QuadraticMap.isOrtho_comm {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] {Q : QuadraticMap R M N} {x y : M} :
                                                Q.IsOrtho x y Q.IsOrtho y x
                                                theorem QuadraticMap.IsOrtho.symm {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] {Q : QuadraticMap R M N} {x y : M} :
                                                Q.IsOrtho x yQ.IsOrtho y x

                                                Alias of the forward direction of QuadraticMap.isOrtho_comm.

                                                theorem LinearMap.BilinForm.toQuadraticMap_isOrtho {R : Type u_3} {M : Type u_4} [CommSemiring R] [AddCommMonoid M] [Module R M] [IsCancelAdd R] [NoZeroDivisors R] [CharZero R] {B : LinearMap.BilinMap R M R} {x y : M} (h : LinearMap.IsSymm B) :
                                                B.toQuadraticMap.IsOrtho x y LinearMap.IsOrtho B x y
                                                @[simp]
                                                theorem QuadraticMap.isOrtho_polarBilin {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {Q : QuadraticMap R M N} {x y : M} :
                                                LinearMap.IsOrtho Q.polarBilin x y Q.IsOrtho x y
                                                theorem QuadraticMap.IsOrtho.polar_eq_zero {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {Q : QuadraticMap R M N} {x y : M} (h : Q.IsOrtho x y) :
                                                QuadraticMap.polar (⇑Q) x y = 0
                                                @[simp]
                                                theorem QuadraticMap.associated_isOrtho {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {Q : QuadraticMap R M N} [Invertible 2] {x y : M} :
                                                LinearMap.IsOrtho (QuadraticMap.associated Q) x y Q.IsOrtho x y
                                                def QuadraticMap.Anisotropic {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (Q : QuadraticMap R M N) :

                                                An anisotropic quadratic map is zero only on zero vectors.

                                                Equations
                                                • Q.Anisotropic = ∀ (x : M), Q x = 0x = 0
                                                Instances For
                                                  theorem QuadraticMap.not_anisotropic_iff_exists {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (Q : QuadraticMap R M N) :
                                                  ¬Q.Anisotropic ∃ (x : M), x 0 Q x = 0
                                                  theorem QuadraticMap.Anisotropic.eq_zero_iff {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] {Q : QuadraticMap R M N} (h : Q.Anisotropic) {x : M} :
                                                  Q x = 0 x = 0
                                                  theorem QuadraticMap.separatingLeft_of_anisotropic {R : Type u_3} {M : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [Invertible 2] (Q : QuadraticMap R M R) (hB : Q.Anisotropic) :
                                                  LinearMap.SeparatingLeft (QuadraticMap.associated' Q)

                                                  The associated bilinear form of an anisotropic quadratic form is nondegenerate.

                                                  def QuadraticMap.PosDef {M : Type u_4} {N : Type u_5} {R₂ : Type u} [CommSemiring R₂] [AddCommMonoid M] [Module R₂ M] [PartialOrder N] [AddCommMonoid N] [Module R₂ N] (Q₂ : QuadraticMap R₂ M N) :

                                                  A positive definite quadratic form is positive on nonzero vectors.

                                                  Equations
                                                  • Q₂.PosDef = ∀ (x : M), x 00 < Q₂ x
                                                  Instances For
                                                    theorem QuadraticMap.PosDef.smul {M : Type u_4} {N : Type u_5} [AddCommMonoid M] [PartialOrder N] [AddCommMonoid N] {R : Type u_8} [LinearOrderedCommRing R] [Module R M] [Module R N] [PosSMulStrictMono R N] {Q : QuadraticMap R M N} (h : Q.PosDef) {a : R} (a_pos : 0 < a) :
                                                    (a Q).PosDef
                                                    theorem QuadraticMap.PosDef.nonneg {M : Type u_4} {N : Type u_5} {R₂ : Type u} [CommSemiring R₂] [AddCommMonoid M] [Module R₂ M] [PartialOrder N] [AddCommMonoid N] [Module R₂ N] {Q : QuadraticMap R₂ M N} (hQ : Q.PosDef) (x : M) :
                                                    0 Q x
                                                    theorem QuadraticMap.PosDef.anisotropic {M : Type u_4} {N : Type u_5} {R₂ : Type u} [CommSemiring R₂] [AddCommMonoid M] [Module R₂ M] [PartialOrder N] [AddCommMonoid N] [Module R₂ N] {Q : QuadraticMap R₂ M N} (hQ : Q.PosDef) :
                                                    Q.Anisotropic
                                                    theorem QuadraticMap.posDef_of_nonneg {M : Type u_4} {N : Type u_5} {R₂ : Type u} [CommSemiring R₂] [AddCommMonoid M] [Module R₂ M] [PartialOrder N] [AddCommMonoid N] [Module R₂ N] {Q : QuadraticMap R₂ M N} (h : ∀ (x : M), 0 Q x) (h0 : Q.Anisotropic) :
                                                    Q.PosDef
                                                    theorem QuadraticMap.posDef_iff_nonneg {M : Type u_4} {N : Type u_5} {R₂ : Type u} [CommSemiring R₂] [AddCommMonoid M] [Module R₂ M] [PartialOrder N] [AddCommMonoid N] [Module R₂ N] {Q : QuadraticMap R₂ M N} :
                                                    Q.PosDef (∀ (x : M), 0 Q x) Q.Anisotropic
                                                    theorem QuadraticMap.PosDef.add {M : Type u_4} {N : Type u_5} {R₂ : Type u} [CommSemiring R₂] [AddCommMonoid M] [Module R₂ M] [PartialOrder N] [AddCommMonoid N] [Module R₂ N] [AddLeftStrictMono N] (Q Q' : QuadraticMap R₂ M N) (hQ : Q.PosDef) (hQ' : Q'.PosDef) :
                                                    (Q + Q').PosDef

                                                    Quadratic forms and matrices #

                                                    Connect quadratic forms and matrices, in order to explicitly compute with them. The convention is twos out, so there might be a factor 2⁻¹ in the entries of the matrix. The determinant of the matrix is the discriminant of the quadratic form.

                                                    def Matrix.toQuadraticMap' {R : Type u_3} {n : Type w} [Fintype n] [DecidableEq n] [CommRing R] (M : Matrix n n R) :
                                                    QuadraticMap R (nR) R

                                                    M.toQuadraticMap' is the map fun x ↦ row x * M * col x as a quadratic form.

                                                    Equations
                                                    Instances For
                                                      def QuadraticMap.toMatrix' {R : Type u_3} {n : Type w} [Fintype n] [DecidableEq n] [CommRing R] [Invertible 2] (Q : QuadraticMap R (nR) R) :
                                                      Matrix n n R

                                                      A matrix representation of the quadratic form.

                                                      Equations
                                                      Instances For
                                                        theorem QuadraticMap.toMatrix'_smul {R : Type u_3} {n : Type w} [Fintype n] [DecidableEq n] [CommRing R] [Invertible 2] (a : R) (Q : QuadraticMap R (nR) R) :
                                                        (a Q).toMatrix' = a Q.toMatrix'
                                                        theorem QuadraticMap.isSymm_toMatrix' {R : Type u_3} {n : Type w} [Fintype n] [DecidableEq n] [CommRing R] [Invertible 2] (Q : QuadraticMap R (nR) R) :
                                                        Q.toMatrix'.IsSymm
                                                        @[simp]
                                                        theorem QuadraticMap.toMatrix'_comp {R : Type u_3} {n : Type w} [Fintype n] [CommRing R] [DecidableEq n] [Invertible 2] {m : Type w} [DecidableEq m] [Fintype m] (Q : QuadraticMap R (mR) R) (f : (nR) →ₗ[R] mR) :
                                                        (Q.comp f).toMatrix' = (LinearMap.toMatrix' f).transpose * Q.toMatrix' * LinearMap.toMatrix' f
                                                        def QuadraticMap.discr {R : Type u_3} {n : Type w} [Fintype n] [CommRing R] [DecidableEq n] [Invertible 2] (Q : QuadraticMap R (nR) R) :
                                                        R

                                                        The discriminant of a quadratic form generalizes the discriminant of a quadratic polynomial.

                                                        Equations
                                                        • Q.discr = Q.toMatrix'.det
                                                        Instances For
                                                          theorem QuadraticMap.discr_smul {R : Type u_3} {n : Type w} [Fintype n] [CommRing R] [DecidableEq n] [Invertible 2] {Q : QuadraticMap R (nR) R} (a : R) :
                                                          (a Q).discr = a ^ Fintype.card n * Q.discr
                                                          theorem QuadraticMap.discr_comp {R : Type u_3} {n : Type w} [Fintype n] [CommRing R] [DecidableEq n] [Invertible 2] {Q : QuadraticMap R (nR) R} (f : (nR) →ₗ[R] nR) :
                                                          (Q.comp f).discr = (LinearMap.toMatrix' f).det * (LinearMap.toMatrix' f).det * Q.discr

                                                          A bilinear form is separating left if the quadratic form it is associated with is anisotropic.

                                                          theorem LinearMap.BilinForm.exists_bilinForm_self_ne_zero {R : Type u_3} {M : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [htwo : Invertible 2] {B : LinearMap.BilinForm R M} (hB₁ : B 0) (hB₂ : LinearMap.IsSymm B) :
                                                          ∃ (x : M), ¬LinearMap.IsOrtho B x x

                                                          There exists a non-null vector with respect to any symmetric, nonzero bilinear form B on a module M over a ring R with invertible 2, i.e. there exists some x : M such that B x x ≠ 0.

                                                          theorem LinearMap.BilinForm.exists_orthogonal_basis {V : Type u} {K : Type v} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] [hK : Invertible 2] {B : LinearMap.BilinForm K V} (hB₂ : LinearMap.IsSymm B) :
                                                          ∃ (v : Basis (Fin (Module.finrank K V)) K V), LinearMap.IsOrthoᵢ B v

                                                          Given a symmetric bilinear form B on some vector space V over a field K in which 2 is invertible, there exists an orthogonal basis with respect to B.

                                                          noncomputable def QuadraticMap.basisRepr {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] {ι : Type u_8} [Finite ι] (Q : QuadraticMap R M N) (v : Basis ι R M) :
                                                          QuadraticMap R (ιR) N

                                                          Given a quadratic map Q and a basis, basisRepr is the basis representation of Q.

                                                          Equations
                                                          • Q.basisRepr v = Q.comp v.equivFun.symm
                                                          Instances For
                                                            @[simp]
                                                            theorem QuadraticMap.basisRepr_apply {R : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] {ι : Type u_8} [Fintype ι] {v : Basis ι R M} (Q : QuadraticMap R M N) (w : ιR) :
                                                            (Q.basisRepr v) w = Q (∑ i : ι, w i v i)
                                                            def QuadraticMap.weightedSumSquares {S : Type u_1} (R : Type u_3) [CommSemiring R] {ι : Type u_8} [Fintype ι] [Monoid S] [DistribMulAction S R] [SMulCommClass S R R] (w : ιS) :
                                                            QuadraticMap R (ιR) R

                                                            The weighted sum of squares with respect to some weight as a quadratic form.

                                                            The weights are applied using ; typically this definition is used either with S = R or [Algebra S R], although this is stated more generally.

                                                            Equations
                                                            Instances For
                                                              @[simp]
                                                              theorem QuadraticMap.weightedSumSquares_apply {S : Type u_1} {R : Type u_3} [CommSemiring R] {ι : Type u_8} [Fintype ι] [Monoid S] [DistribMulAction S R] [SMulCommClass S R R] (w : ιS) (v : ιR) :
                                                              (QuadraticMap.weightedSumSquares R w) v = i : ι, w i (v i * v i)
                                                              theorem QuadraticMap.basisRepr_eq_of_iIsOrtho {ι : Type u_8} [Fintype ι] {R : Type u_9} {M : Type u_10} [CommRing R] [AddCommGroup M] [Module R M] [Invertible 2] (Q : QuadraticForm R M) (v : Basis ι R M) (hv₂ : LinearMap.IsOrthoᵢ (QuadraticMap.associated Q) v) :

                                                              On an orthogonal basis, the basis representation of Q is just a sum of squares.