HepLean Documentation

Mathlib.MeasureTheory.Group.Action

Measures invariant under group actions #

A measure μ : Measure α is said to be invariant under an action of a group G if scalar multiplication by c : G is a measure preserving map for all c. In this file we define a typeclass for measures invariant under action of an (additive or multiplicative) group and prove some basic properties of such measures.

theorem MeasureTheory.measure_preimage_smul_le {G : Type u} {α : Type w} {m : MeasurableSpace α} [SMul G α] (μ : MeasureTheory.Measure α) [MeasureTheory.SMulInvariantMeasure G α μ] (c : G) (s : Set α) :
μ ((fun (x : α) => c x) ⁻¹' s) μ s

See also measure_preimage_smul_of_nullMeasurableSet and measure_preimage_smul.

theorem MeasureTheory.measure_preimage_vadd_le {G : Type u} {α : Type w} {m : MeasurableSpace α} [VAdd G α] (μ : MeasureTheory.Measure α) [MeasureTheory.VAddInvariantMeasure G α μ] (c : G) (s : Set α) :
μ ((fun (x : α) => c +ᵥ x) ⁻¹' s) μ s

See also measure_preimage_smul_of_nullMeasurableSet and measure_preimage_smul.

theorem MeasureTheory.tendsto_smul_ae {G : Type u} {α : Type w} {m : MeasurableSpace α} [SMul G α] (μ : MeasureTheory.Measure α) [MeasureTheory.SMulInvariantMeasure G α μ] (c : G) :
Filter.Tendsto (fun (x : α) => c x) (MeasureTheory.ae μ) (MeasureTheory.ae μ)

See also smul_ae.

theorem MeasureTheory.tendsto_vadd_ae {G : Type u} {α : Type w} {m : MeasurableSpace α} [VAdd G α] (μ : MeasureTheory.Measure α) [MeasureTheory.VAddInvariantMeasure G α μ] (c : G) :
Filter.Tendsto (fun (x : α) => c +ᵥ x) (MeasureTheory.ae μ) (MeasureTheory.ae μ)

See also vadd_ae.

theorem MeasureTheory.measure_preimage_smul_null {G : Type u} {α : Type w} {m : MeasurableSpace α} [SMul G α] {μ : MeasureTheory.Measure α} [MeasureTheory.SMulInvariantMeasure G α μ] {s : Set α} (h : μ s = 0) (c : G) :
μ ((fun (x : α) => c x) ⁻¹' s) = 0
theorem MeasureTheory.measure_preimage_vadd_null {G : Type u} {α : Type w} {m : MeasurableSpace α} [VAdd G α] {μ : MeasureTheory.Measure α} [MeasureTheory.VAddInvariantMeasure G α μ] {s : Set α} (h : μ s = 0) (c : G) :
μ ((fun (x : α) => c +ᵥ x) ⁻¹' s) = 0
theorem MeasureTheory.measure_preimage_smul_of_nullMeasurableSet {G : Type u} {α : Type w} {m : MeasurableSpace α} [SMul G α] {μ : MeasureTheory.Measure α} [MeasureTheory.SMulInvariantMeasure G α μ] {s : Set α} (hs : MeasureTheory.NullMeasurableSet s μ) (c : G) :
μ ((fun (x : α) => c x) ⁻¹' s) = μ s
theorem MeasureTheory.measure_preimage_vadd_of_nullMeasurableSet {G : Type u} {α : Type w} {m : MeasurableSpace α} [VAdd G α] {μ : MeasureTheory.Measure α} [MeasureTheory.VAddInvariantMeasure G α μ] {s : Set α} (hs : MeasureTheory.NullMeasurableSet s μ) (c : G) :
μ ((fun (x : α) => c +ᵥ x) ⁻¹' s) = μ s
@[simp]
theorem MeasureTheory.measure_preimage_smul {G : Type u} {α : Type w} {m : MeasurableSpace α} [Group G] [MulAction G α] (μ : MeasureTheory.Measure α) [MeasureTheory.SMulInvariantMeasure G α μ] (c : G) (s : Set α) :
μ ((fun (x : α) => c x) ⁻¹' s) = μ s
@[simp]
theorem MeasureTheory.measure_preimage_vadd {G : Type u} {α : Type w} {m : MeasurableSpace α} [AddGroup G] [AddAction G α] (μ : MeasureTheory.Measure α) [MeasureTheory.VAddInvariantMeasure G α μ] (c : G) (s : Set α) :
μ ((fun (x : α) => c +ᵥ x) ⁻¹' s) = μ s
@[simp]
theorem MeasureTheory.measure_smul {G : Type u} {α : Type w} {m : MeasurableSpace α} [Group G] [MulAction G α] (μ : MeasureTheory.Measure α) [MeasureTheory.SMulInvariantMeasure G α μ] (c : G) (s : Set α) :
μ (c s) = μ s
@[simp]
theorem MeasureTheory.measure_vadd {G : Type u} {α : Type w} {m : MeasurableSpace α} [AddGroup G] [AddAction G α] (μ : MeasureTheory.Measure α) [MeasureTheory.VAddInvariantMeasure G α μ] (c : G) (s : Set α) :
μ (c +ᵥ s) = μ s
theorem MeasureTheory.measure_smul_eq_zero_iff {G : Type u} {α : Type w} {m : MeasurableSpace α} [Group G] [MulAction G α] {μ : MeasureTheory.Measure α} [MeasureTheory.SMulInvariantMeasure G α μ] {s : Set α} (c : G) :
μ (c s) = 0 μ s = 0
theorem MeasureTheory.measure_vadd_eq_zero_iff {G : Type u} {α : Type w} {m : MeasurableSpace α} [AddGroup G] [AddAction G α] {μ : MeasureTheory.Measure α} [MeasureTheory.VAddInvariantMeasure G α μ] {s : Set α} (c : G) :
μ (c +ᵥ s) = 0 μ s = 0
theorem MeasureTheory.measure_smul_null {G : Type u} {α : Type w} {m : MeasurableSpace α} [Group G] [MulAction G α] {μ : MeasureTheory.Measure α} [MeasureTheory.SMulInvariantMeasure G α μ] {s : Set α} (h : μ s = 0) (c : G) :
μ (c s) = 0
theorem MeasureTheory.measure_vadd_null {G : Type u} {α : Type w} {m : MeasurableSpace α} [AddGroup G] [AddAction G α] {μ : MeasureTheory.Measure α} [MeasureTheory.VAddInvariantMeasure G α μ] {s : Set α} (h : μ s = 0) (c : G) :
μ (c +ᵥ s) = 0
@[simp]
@[simp]
@[simp]
theorem MeasureTheory.smul_set_ae_le {G : Type u} {α : Type w} {m : MeasurableSpace α} [Group G] [MulAction G α] {μ : MeasureTheory.Measure α} [MeasureTheory.SMulInvariantMeasure G α μ] (c : G) {s t : Set α} :
c s ≤ᵐ[μ] c t s ≤ᵐ[μ] t
@[simp]
theorem MeasureTheory.vadd_set_ae_le {G : Type u} {α : Type w} {m : MeasurableSpace α} [AddGroup G] [AddAction G α] {μ : MeasureTheory.Measure α} [MeasureTheory.VAddInvariantMeasure G α μ] (c : G) {s t : Set α} :
c +ᵥ s ≤ᵐ[μ] c +ᵥ t s ≤ᵐ[μ] t
@[simp]
theorem MeasureTheory.smul_set_ae_eq {G : Type u} {α : Type w} {m : MeasurableSpace α} [Group G] [MulAction G α] {μ : MeasureTheory.Measure α} [MeasureTheory.SMulInvariantMeasure G α μ] (c : G) {s t : Set α} :
c s =ᵐ[μ] c t s =ᵐ[μ] t
@[simp]
theorem MeasureTheory.vadd_set_ae_eq {G : Type u} {α : Type w} {m : MeasurableSpace α} [AddGroup G] [AddAction G α] {μ : MeasureTheory.Measure α} [MeasureTheory.VAddInvariantMeasure G α μ] (c : G) {s t : Set α} :
c +ᵥ s =ᵐ[μ] c +ᵥ t s =ᵐ[μ] t
@[simp]
@[simp]
@[simp]
theorem MeasureTheory.map_smul {M : Type v} {α : Type w} {m : MeasurableSpace α} [MeasurableSpace M] [SMul M α] [MeasurableSMul M α] (c : M) (μ : MeasureTheory.Measure α) [MeasureTheory.SMulInvariantMeasure M α μ] :
MeasureTheory.Measure.map (fun (x : α) => c x) μ = μ
@[simp]
theorem MeasureTheory.map_vadd {M : Type v} {α : Type w} {m : MeasurableSpace α} [MeasurableSpace M] [VAdd M α] [MeasurableVAdd M α] (c : M) (μ : MeasureTheory.Measure α) [MeasureTheory.VAddInvariantMeasure M α μ] :
MeasureTheory.Measure.map (fun (x : α) => c +ᵥ x) μ = μ
theorem MeasureTheory.smulInvariantMeasure_map {M : Type uM} {α : Type uα} {β : Type uβ} [MeasurableSpace M] [MeasurableSpace α] [MeasurableSpace β] [SMul M α] [SMul M β] [MeasurableSMul M β] (μ : MeasureTheory.Measure α) [MeasureTheory.SMulInvariantMeasure M α μ] (f : αβ) (hsmul : ∀ (m : M) (a : α), f (m a) = m f a) (hf : Measurable f) :
theorem MeasureTheory.vaddInvariantMeasure_map {M : Type uM} {α : Type uα} {β : Type uβ} [MeasurableSpace M] [MeasurableSpace α] [MeasurableSpace β] [VAdd M α] [VAdd M β] [MeasurableVAdd M β] (μ : MeasureTheory.Measure α) [MeasureTheory.VAddInvariantMeasure M α μ] (f : αβ) (hsmul : ∀ (m : M) (a : α), f (m +ᵥ a) = m +ᵥ f a) (hf : Measurable f) :
Equations
  • =
theorem MeasureTheory.smulInvariantMeasure_tfae (G : Type u) {α : Type w} {m : MeasurableSpace α} [Group G] [MulAction G α] (μ : MeasureTheory.Measure α) [MeasurableSpace G] [MeasurableSMul G α] :
[MeasureTheory.SMulInvariantMeasure G α μ, ∀ (c : G) (s : Set α), MeasurableSet sμ ((fun (x : α) => c x) ⁻¹' s) = μ s, ∀ (c : G) (s : Set α), MeasurableSet sμ (c s) = μ s, ∀ (c : G) (s : Set α), μ ((fun (x : α) => c x) ⁻¹' s) = μ s, ∀ (c : G) (s : Set α), μ (c s) = μ s, ∀ (c : G), MeasureTheory.Measure.map (fun (x : α) => c x) μ = μ, ∀ (c : G), MeasureTheory.MeasurePreserving (fun (x : α) => c x) μ μ].TFAE

Equivalent definitions of a measure invariant under a multiplicative action of a group.

  • 0: SMulInvariantMeasure G α μ;

  • 1: for every c : G and a measurable set s, the measure of the preimage of s under scalar multiplication by c is equal to the measure of s;

  • 2: for every c : G and a measurable set s, the measure of the image c • s of s under scalar multiplication by c is equal to the measure of s;

  • 3, 4: properties 2, 3 for any set, including non-measurable ones;

  • 5: for any c : G, scalar multiplication by c maps μ to μ;

  • 6: for any c : G, scalar multiplication by c is a measure preserving map.

theorem MeasureTheory.vaddInvariantMeasure_tfae (G : Type u) {α : Type w} {m : MeasurableSpace α} [AddGroup G] [AddAction G α] (μ : MeasureTheory.Measure α) [MeasurableSpace G] [MeasurableVAdd G α] :
[MeasureTheory.VAddInvariantMeasure G α μ, ∀ (c : G) (s : Set α), MeasurableSet sμ ((fun (x : α) => c +ᵥ x) ⁻¹' s) = μ s, ∀ (c : G) (s : Set α), MeasurableSet sμ (c +ᵥ s) = μ s, ∀ (c : G) (s : Set α), μ ((fun (x : α) => c +ᵥ x) ⁻¹' s) = μ s, ∀ (c : G) (s : Set α), μ (c +ᵥ s) = μ s, ∀ (c : G), MeasureTheory.Measure.map (fun (x : α) => c +ᵥ x) μ = μ, ∀ (c : G), MeasureTheory.MeasurePreserving (fun (x : α) => c +ᵥ x) μ μ].TFAE

Equivalent definitions of a measure invariant under an additive action of a group.

  • 0: VAddInvariantMeasure G α μ;

  • 1: for every c : G and a measurable set s, the measure of the preimage of s under vector addition (c +ᵥ ·) is equal to the measure of s;

  • 2: for every c : G and a measurable set s, the measure of the image c +ᵥ s of s under vector addition (c +ᵥ ·) is equal to the measure of s;

  • 3, 4: properties 2, 3 for any set, including non-measurable ones;

  • 5: for any c : G, vector addition of c maps μ to μ;

  • 6: for any c : G, vector addition of c is a measure preserving map.

theorem MeasureTheory.measure_isOpen_pos_of_smulInvariant_of_compact_ne_zero (G : Type u) {α : Type w} {m : MeasurableSpace α} [Group G] [MulAction G α] {μ : MeasureTheory.Measure α} [MeasureTheory.SMulInvariantMeasure G α μ] [TopologicalSpace α] [ContinuousConstSMul G α] [MulAction.IsMinimal G α] {K U : Set α} (hK : IsCompact K) (hμK : μ K 0) (hU : IsOpen U) (hne : U.Nonempty) :
0 < μ U

If measure μ is invariant under a group action and is nonzero on a compact set K, then it is positive on any nonempty open set. In case of a regular measure, one can assume μ ≠ 0 instead of μ K ≠ 0, see MeasureTheory.measure_isOpen_pos_of_smulInvariant_of_ne_zero.

theorem MeasureTheory.measure_isOpen_pos_of_vaddInvariant_of_compact_ne_zero (G : Type u) {α : Type w} {m : MeasurableSpace α} [AddGroup G] [AddAction G α] {μ : MeasureTheory.Measure α} [MeasureTheory.VAddInvariantMeasure G α μ] [TopologicalSpace α] [ContinuousConstVAdd G α] [AddAction.IsMinimal G α] {K U : Set α} (hK : IsCompact K) (hμK : μ K 0) (hU : IsOpen U) (hne : U.Nonempty) :
0 < μ U

If measure μ is invariant under an additive group action and is nonzero on a compact set K, then it is positive on any nonempty open set. In case of a regular measure, one can assume μ ≠ 0 instead of μ K ≠ 0, see MeasureTheory.measure_isOpen_pos_of_vaddInvariant_of_ne_zero.

theorem MeasureTheory.measure_isOpen_pos_of_smulInvariant_of_ne_zero (G : Type u) {α : Type w} {m : MeasurableSpace α} [Group G] [MulAction G α] {μ : MeasureTheory.Measure α} [MeasureTheory.SMulInvariantMeasure G α μ] [TopologicalSpace α] [ContinuousConstSMul G α] [MulAction.IsMinimal G α] {U : Set α} [μ.Regular] (hμ : μ 0) (hU : IsOpen U) (hne : U.Nonempty) :
0 < μ U
theorem MeasureTheory.measure_isOpen_pos_of_vaddInvariant_of_ne_zero (G : Type u) {α : Type w} {m : MeasurableSpace α} [AddGroup G] [AddAction G α] {μ : MeasureTheory.Measure α} [MeasureTheory.VAddInvariantMeasure G α μ] [TopologicalSpace α] [ContinuousConstVAdd G α] [AddAction.IsMinimal G α] {U : Set α} [μ.Regular] (hμ : μ 0) (hU : IsOpen U) (hne : U.Nonempty) :
0 < μ U
theorem MeasureTheory.measure_pos_iff_nonempty_of_smulInvariant (G : Type u) {α : Type w} {m : MeasurableSpace α} [Group G] [MulAction G α] {μ : MeasureTheory.Measure α} [MeasureTheory.SMulInvariantMeasure G α μ] [TopologicalSpace α] [ContinuousConstSMul G α] [MulAction.IsMinimal G α] {U : Set α} [μ.Regular] (hμ : μ 0) (hU : IsOpen U) :
0 < μ U U.Nonempty
theorem MeasureTheory.measure_pos_iff_nonempty_of_vaddInvariant (G : Type u) {α : Type w} {m : MeasurableSpace α} [AddGroup G] [AddAction G α] {μ : MeasureTheory.Measure α} [MeasureTheory.VAddInvariantMeasure G α μ] [TopologicalSpace α] [ContinuousConstVAdd G α] [AddAction.IsMinimal G α] {U : Set α} [μ.Regular] (hμ : μ 0) (hU : IsOpen U) :
0 < μ U U.Nonempty
theorem MeasureTheory.measure_eq_zero_iff_eq_empty_of_smulInvariant (G : Type u) {α : Type w} {m : MeasurableSpace α} [Group G] [MulAction G α] {μ : MeasureTheory.Measure α} [MeasureTheory.SMulInvariantMeasure G α μ] [TopologicalSpace α] [ContinuousConstSMul G α] [MulAction.IsMinimal G α] {U : Set α} [μ.Regular] (hμ : μ 0) (hU : IsOpen U) :
μ U = 0 U =