HepLean Documentation

Mathlib.Order.SupIndep

Supremum independence #

In this file, we define supremum independence of indexed sets. An indexed family f : ι → α is sup-independent if, for all a, f a and the supremum of the rest are disjoint.

Main definitions #

Main statements #

Implementation notes #

For the finite version, we avoid the "obvious" definition ∀ i ∈ s, Disjoint (f i) ((s.erase i).sup f) because erase would require decidable equality on ι.

On lattices with a bottom element, via Finset.sup #

def Finset.SupIndep {α : Type u_1} {ι : Type u_3} [Lattice α] [OrderBot α] (s : Finset ι) (f : ια) :

Supremum independence of finite sets. We avoid the "obvious" definition using s.erase i because erase would require decidable equality on ι.

Equations
  • s.SupIndep f = ∀ ⦃t : Finset ι⦄, t s∀ ⦃i : ι⦄, i sitDisjoint (f i) (t.sup f)
Instances For
    instance Finset.instDecidableSupIndepOfDecidableEq {α : Type u_1} {ι : Type u_3} [Lattice α] [OrderBot α] {s : Finset ι} {f : ια} [DecidableEq ι] [DecidableEq α] :
    Decidable (s.SupIndep f)
    Equations
    • Finset.instDecidableSupIndepOfDecidableEq = Finset.decidableForallOfDecidableSubsets
    theorem Finset.SupIndep.subset {α : Type u_1} {ι : Type u_3} [Lattice α] [OrderBot α] {s t : Finset ι} {f : ια} (ht : t.SupIndep f) (h : s t) :
    s.SupIndep f
    @[simp]
    theorem Finset.supIndep_empty {α : Type u_1} {ι : Type u_3} [Lattice α] [OrderBot α] (f : ια) :
    .SupIndep f
    theorem Finset.supIndep_singleton {α : Type u_1} {ι : Type u_3} [Lattice α] [OrderBot α] (i : ι) (f : ια) :
    {i}.SupIndep f
    theorem Finset.SupIndep.pairwiseDisjoint {α : Type u_1} {ι : Type u_3} [Lattice α] [OrderBot α] {s : Finset ι} {f : ια} (hs : s.SupIndep f) :
    (↑s).PairwiseDisjoint f
    theorem Finset.SupIndep.le_sup_iff {α : Type u_1} {ι : Type u_3} [Lattice α] [OrderBot α] {s t : Finset ι} {f : ια} {i : ι} (hs : s.SupIndep f) (hts : t s) (hi : i s) (hf : ∀ (i : ι), f i ) :
    f i t.sup f i t
    theorem Finset.supIndep_iff_disjoint_erase {α : Type u_1} {ι : Type u_3} [Lattice α] [OrderBot α] {s : Finset ι} {f : ια} [DecidableEq ι] :
    s.SupIndep f is, Disjoint (f i) ((s.erase i).sup f)

    The RHS looks like the definition of iSupIndep.

    theorem Finset.supIndep_antimono_fun {α : Type u_1} {ι : Type u_3} [Lattice α] [OrderBot α] {s : Finset ι} {f g : ια} (h : xs, f x g x) :
    s.SupIndep gs.SupIndep f
    theorem Finset.SupIndep.image {α : Type u_1} {ι : Type u_3} {ι' : Type u_4} [Lattice α] [OrderBot α] {f : ια} [DecidableEq ι] {s : Finset ι'} {g : ι'ι} (hs : s.SupIndep (f g)) :
    (Finset.image g s).SupIndep f
    theorem Finset.supIndep_map {α : Type u_1} {ι : Type u_3} {ι' : Type u_4} [Lattice α] [OrderBot α] {f : ια} {s : Finset ι'} {g : ι' ι} :
    (Finset.map g s).SupIndep f s.SupIndep (f g)
    @[simp]
    theorem Finset.supIndep_pair {α : Type u_1} {ι : Type u_3} [Lattice α] [OrderBot α] {f : ια} [DecidableEq ι] {i j : ι} (hij : i j) :
    {i, j}.SupIndep f Disjoint (f i) (f j)
    theorem Finset.supIndep_univ_bool {α : Type u_1} [Lattice α] [OrderBot α] (f : Boolα) :
    Finset.univ.SupIndep f Disjoint (f false) (f true)
    @[simp]
    theorem Finset.supIndep_univ_fin_two {α : Type u_1} [Lattice α] [OrderBot α] (f : Fin 2α) :
    Finset.univ.SupIndep f Disjoint (f 0) (f 1)
    theorem Finset.SupIndep.attach {α : Type u_1} {ι : Type u_3} [Lattice α] [OrderBot α] {s : Finset ι} {f : ια} (hs : s.SupIndep f) :
    s.attach.SupIndep fun (a : { x : ι // x s }) => f a
    @[simp]
    theorem Finset.supIndep_attach {α : Type u_1} {ι : Type u_3} [Lattice α] [OrderBot α] {s : Finset ι} {f : ια} :
    (s.attach.SupIndep fun (a : { x : ι // x s }) => f a) s.SupIndep f
    theorem Finset.supIndep_iff_pairwiseDisjoint {α : Type u_1} {ι : Type u_3} [DistribLattice α] [OrderBot α] {s : Finset ι} {f : ια} :
    s.SupIndep f (↑s).PairwiseDisjoint f
    theorem Finset.sup_indep.pairwise_disjoint {α : Type u_1} {ι : Type u_3} [DistribLattice α] [OrderBot α] {s : Finset ι} {f : ια} :
    s.SupIndep f(↑s).PairwiseDisjoint f

    Alias of the forward direction of Finset.supIndep_iff_pairwiseDisjoint.

    theorem Set.PairwiseDisjoint.supIndep {α : Type u_1} {ι : Type u_3} [DistribLattice α] [OrderBot α] {s : Finset ι} {f : ια} :
    (↑s).PairwiseDisjoint fs.SupIndep f

    Alias of the reverse direction of Finset.supIndep_iff_pairwiseDisjoint.

    theorem Finset.SupIndep.sup {α : Type u_1} {ι : Type u_3} {ι' : Type u_4} [DistribLattice α] [OrderBot α] [DecidableEq ι] {s : Finset ι'} {g : ι'Finset ι} {f : ια} (hs : s.SupIndep fun (i : ι') => (g i).sup f) (hg : i's, (g i').SupIndep f) :
    (s.sup g).SupIndep f

    Bind operation for SupIndep.

    theorem Finset.SupIndep.biUnion {α : Type u_1} {ι : Type u_3} {ι' : Type u_4} [DistribLattice α] [OrderBot α] [DecidableEq ι] {s : Finset ι'} {g : ι'Finset ι} {f : ια} (hs : s.SupIndep fun (i : ι') => (g i).sup f) (hg : i's, (g i').SupIndep f) :
    (s.biUnion g).SupIndep f

    Bind operation for SupIndep.

    theorem Finset.SupIndep.sigma {α : Type u_1} {ι : Type u_3} [DistribLattice α] [OrderBot α] {β : ιType u_5} {s : Finset ι} {g : (i : ι) → Finset (β i)} {f : Sigma βα} (hs : s.SupIndep fun (i : ι) => (g i).sup fun (b : β i) => f i, b) (hg : is, (g i).SupIndep fun (b : β i) => f i, b) :
    (s.sigma g).SupIndep f

    Bind operation for SupIndep.

    theorem Finset.SupIndep.product {α : Type u_1} {ι : Type u_3} {ι' : Type u_4} [DistribLattice α] [OrderBot α] {s : Finset ι} {t : Finset ι'} {f : ι × ι'α} (hs : s.SupIndep fun (i : ι) => t.sup fun (i' : ι') => f (i, i')) (ht : t.SupIndep fun (i' : ι') => s.sup fun (i : ι) => f (i, i')) :
    (s ×ˢ t).SupIndep f
    theorem Finset.supIndep_product_iff {α : Type u_1} {ι : Type u_3} {ι' : Type u_4} [DistribLattice α] [OrderBot α] {s : Finset ι} {t : Finset ι'} {f : ι × ι'α} :
    (s.product t).SupIndep f (s.SupIndep fun (i : ι) => t.sup fun (i' : ι') => f (i, i')) t.SupIndep fun (i' : ι') => s.sup fun (i : ι) => f (i, i')

    On complete lattices via sSup #

    def sSupIndep {α : Type u_1} [CompleteLattice α] (s : Set α) :

    An independent set of elements in a complete lattice is one in which every element is disjoint from the Sup of the rest.

    Equations
    Instances For
      @[deprecated sSupIndep]

      Alias of sSupIndep.


      An independent set of elements in a complete lattice is one in which every element is disjoint from the Sup of the rest.

      Equations
      Instances For
        @[simp]
        @[deprecated sSupIndep_empty]

        Alias of sSupIndep_empty.

        theorem sSupIndep.mono {α : Type u_1} [CompleteLattice α] {s : Set α} (hs : sSupIndep s) {t : Set α} (hst : t s) :
        @[deprecated sSupIndep.mono]
        theorem CompleteLattice.SetIndependent.mono {α : Type u_1} [CompleteLattice α] {s : Set α} (hs : sSupIndep s) {t : Set α} (hst : t s) :

        Alias of sSupIndep.mono.

        theorem sSupIndep.pairwiseDisjoint {α : Type u_1} [CompleteLattice α] {s : Set α} (hs : sSupIndep s) :
        s.PairwiseDisjoint id

        If the elements of a set are independent, then any pair within that set is disjoint.

        @[deprecated sSupIndep.pairwiseDisjoint]
        theorem CompleteLattice.SetIndependent.pairwiseDisjoint {α : Type u_1} [CompleteLattice α] {s : Set α} (hs : sSupIndep s) :
        s.PairwiseDisjoint id

        Alias of sSupIndep.pairwiseDisjoint.


        If the elements of a set are independent, then any pair within that set is disjoint.

        theorem sSupIndep_singleton {α : Type u_1} [CompleteLattice α] (a : α) :
        @[deprecated sSupIndep_singleton]

        Alias of sSupIndep_singleton.

        theorem sSupIndep_pair {α : Type u_1} [CompleteLattice α] {a b : α} (hab : a b) :
        @[deprecated sSupIndep_pair]
        theorem CompleteLattice.setIndependent_pair {α : Type u_1} [CompleteLattice α] {a b : α} (hab : a b) :

        Alias of sSupIndep_pair.

        theorem sSupIndep.disjoint_sSup {α : Type u_1} [CompleteLattice α] {s : Set α} (hs : sSupIndep s) {x : α} {y : Set α} (hx : x s) (hy : y s) (hxy : xy) :

        If the elements of a set are independent, then any element is disjoint from the sSup of some subset of the rest.

        @[deprecated sSupIndep.disjoint_sSup]
        theorem CompleteLattice.SetIndependent.disjoint_sSup {α : Type u_1} [CompleteLattice α] {s : Set α} (hs : sSupIndep s) {x : α} {y : Set α} (hx : x s) (hy : y s) (hxy : xy) :

        Alias of sSupIndep.disjoint_sSup.


        If the elements of a set are independent, then any element is disjoint from the sSup of some subset of the rest.

        def iSupIndep {ι : Sort u_5} {α : Type u_6} [CompleteLattice α] (t : ια) :

        An independent indexed family of elements in a complete lattice is one in which every element is disjoint from the iSup of the rest.

        Example: an indexed family of non-zero elements in a vector space is linearly independent iff the indexed family of subspaces they generate is independent in this sense.

        Example: an indexed family of submodules of a module is independent in this sense if and only the natural map from the direct sum of the submodules to the module is injective.

        Equations
        Instances For
          @[deprecated iSupIndep]
          def CompleteLattice.Independent {ι : Sort u_5} {α : Type u_6} [CompleteLattice α] (t : ια) :

          Alias of iSupIndep.


          An independent indexed family of elements in a complete lattice is one in which every element is disjoint from the iSup of the rest.

          Example: an indexed family of non-zero elements in a vector space is linearly independent iff the indexed family of subspaces they generate is independent in this sense.

          Example: an indexed family of submodules of a module is independent in this sense if and only the natural map from the direct sum of the submodules to the module is injective.

          Equations
          Instances For
            theorem sSupIndep_iff {α : Type u_5} [CompleteLattice α] (s : Set α) :
            sSupIndep s iSupIndep Subtype.val
            @[deprecated sSupIndep_iff]
            theorem CompleteLattice.setIndependent_iff {α : Type u_5} [CompleteLattice α] (s : Set α) :
            sSupIndep s iSupIndep Subtype.val

            Alias of sSupIndep_iff.

            theorem iSupIndep_def {α : Type u_1} {ι : Type u_3} [CompleteLattice α] {t : ια} :
            iSupIndep t ∀ (i : ι), Disjoint (t i) (⨆ (j : ι), ⨆ (_ : j i), t j)
            @[deprecated iSupIndep_def]
            theorem CompleteLattice.independent_def {α : Type u_1} {ι : Type u_3} [CompleteLattice α] {t : ια} :
            iSupIndep t ∀ (i : ι), Disjoint (t i) (⨆ (j : ι), ⨆ (_ : j i), t j)

            Alias of iSupIndep_def.

            theorem iSupIndep_def' {α : Type u_1} {ι : Type u_3} [CompleteLattice α] {t : ια} :
            iSupIndep t ∀ (i : ι), Disjoint (t i) (sSup (t '' {j : ι | j i}))
            @[deprecated iSupIndep_def']
            theorem CompleteLattice.independent_def' {α : Type u_1} {ι : Type u_3} [CompleteLattice α] {t : ια} :
            iSupIndep t ∀ (i : ι), Disjoint (t i) (sSup (t '' {j : ι | j i}))

            Alias of iSupIndep_def'.

            theorem iSupIndep_def'' {α : Type u_1} {ι : Type u_3} [CompleteLattice α] {t : ια} :
            iSupIndep t ∀ (i : ι), Disjoint (t i) (sSup {a : α | ∃ (j : ι), j i t j = a})
            @[deprecated iSupIndep_def'']
            theorem CompleteLattice.independent_def'' {α : Type u_1} {ι : Type u_3} [CompleteLattice α] {t : ια} :
            iSupIndep t ∀ (i : ι), Disjoint (t i) (sSup {a : α | ∃ (j : ι), j i t j = a})

            Alias of iSupIndep_def''.

            @[simp]
            theorem iSupIndep_empty {α : Type u_1} [CompleteLattice α] (t : Emptyα) :
            @[deprecated iSupIndep_empty]
            theorem CompleteLattice.independent_empty {α : Type u_1} [CompleteLattice α] (t : Emptyα) :

            Alias of iSupIndep_empty.

            @[simp]
            theorem iSupIndep_pempty {α : Type u_1} [CompleteLattice α] (t : PEmpty.{u_5}α) :
            @[deprecated iSupIndep_pempty]

            Alias of iSupIndep_pempty.

            theorem iSupIndep.pairwiseDisjoint {α : Type u_1} {ι : Type u_3} [CompleteLattice α] {t : ια} (ht : iSupIndep t) :
            Pairwise (Disjoint on t)

            If the elements of a set are independent, then any pair within that set is disjoint.

            @[deprecated iSupIndep.pairwiseDisjoint]
            theorem CompleteLattice.Independent.pairwiseDisjoint {α : Type u_1} {ι : Type u_3} [CompleteLattice α] {t : ια} (ht : iSupIndep t) :
            Pairwise (Disjoint on t)

            Alias of iSupIndep.pairwiseDisjoint.


            If the elements of a set are independent, then any pair within that set is disjoint.

            theorem iSupIndep.mono {α : Type u_1} {ι : Type u_3} [CompleteLattice α] {s t : ια} (hs : iSupIndep s) (hst : t s) :
            @[deprecated iSupIndep.mono]
            theorem CompleteLattice.Independent.mono {α : Type u_1} {ι : Type u_3} [CompleteLattice α] {s t : ια} (hs : iSupIndep s) (hst : t s) :

            Alias of iSupIndep.mono.

            theorem iSupIndep.comp {α : Type u_1} [CompleteLattice α] {ι : Sort u_5} {ι' : Sort u_6} {t : ια} {f : ι'ι} (ht : iSupIndep t) (hf : Function.Injective f) :

            Composing an independent indexed family with an injective function on the index results in another indepedendent indexed family.

            @[deprecated iSupIndep.comp]
            theorem CompleteLattice.Independent.comp {α : Type u_1} [CompleteLattice α] {ι : Sort u_5} {ι' : Sort u_6} {t : ια} {f : ι'ι} (ht : iSupIndep t) (hf : Function.Injective f) :

            Alias of iSupIndep.comp.


            Composing an independent indexed family with an injective function on the index results in another indepedendent indexed family.

            theorem iSupIndep.comp' {α : Type u_1} [CompleteLattice α] {ι : Sort u_5} {ι' : Sort u_6} {t : ια} {f : ι'ι} (ht : iSupIndep (t f)) (hf : Function.Surjective f) :
            @[deprecated iSupIndep.comp']
            theorem CompleteLattice.Independent.comp' {α : Type u_1} [CompleteLattice α] {ι : Sort u_5} {ι' : Sort u_6} {t : ια} {f : ι'ι} (ht : iSupIndep (t f)) (hf : Function.Surjective f) :

            Alias of iSupIndep.comp'.

            theorem iSupIndep.sSupIndep_range {α : Type u_1} {ι : Type u_3} [CompleteLattice α] {t : ια} (ht : iSupIndep t) :
            @[deprecated iSupIndep.sSupIndep_range]
            theorem CompleteLattice.Independent.setIndependent_range {α : Type u_1} {ι : Type u_3} [CompleteLattice α] {t : ια} (ht : iSupIndep t) :

            Alias of iSupIndep.sSupIndep_range.

            @[simp]
            theorem iSupIndep_ne_bot {α : Type u_1} {ι : Type u_3} [CompleteLattice α] {t : ια} :
            (iSupIndep fun (i : { i : ι // t i }) => t i) iSupIndep t
            @[deprecated iSupIndep_ne_bot]
            theorem CompleteLattice.independent_ne_bot_iff_independent {α : Type u_1} {ι : Type u_3} [CompleteLattice α] {t : ια} :
            (iSupIndep fun (i : { i : ι // t i }) => t i) iSupIndep t

            Alias of iSupIndep_ne_bot.

            theorem iSupIndep.injOn {α : Type u_1} {ι : Type u_3} [CompleteLattice α] {t : ια} (ht : iSupIndep t) :
            Set.InjOn t {i : ι | t i }
            @[deprecated iSupIndep.injOn]
            theorem CompleteLattice.Independent.injOn {α : Type u_1} {ι : Type u_3} [CompleteLattice α] {t : ια} (ht : iSupIndep t) :
            Set.InjOn t {i : ι | t i }

            Alias of iSupIndep.injOn.

            theorem iSupIndep.injective {α : Type u_1} {ι : Type u_3} [CompleteLattice α] {t : ια} (ht : iSupIndep t) (h_ne_bot : ∀ (i : ι), t i ) :
            @[deprecated iSupIndep.injective]
            theorem CompleteLattice.Independent.injective {α : Type u_1} {ι : Type u_3} [CompleteLattice α] {t : ια} (ht : iSupIndep t) (h_ne_bot : ∀ (i : ι), t i ) :

            Alias of iSupIndep.injective.

            theorem iSupIndep_pair {α : Type u_1} {ι : Type u_3} [CompleteLattice α] {t : ια} {i j : ι} (hij : i j) (huniv : ∀ (k : ι), k = i k = j) :
            iSupIndep t Disjoint (t i) (t j)
            @[deprecated iSupIndep_pair]
            theorem CompleteLattice.independent_pair {α : Type u_1} {ι : Type u_3} [CompleteLattice α] {t : ια} {i j : ι} (hij : i j) (huniv : ∀ (k : ι), k = i k = j) :
            iSupIndep t Disjoint (t i) (t j)

            Alias of iSupIndep_pair.

            theorem iSupIndep.map_orderIso {ι : Sort u_5} {α : Type u_6} {β : Type u_7} [CompleteLattice α] [CompleteLattice β] (f : α ≃o β) {a : ια} (ha : iSupIndep a) :
            iSupIndep (f a)

            Composing an independent indexed family with an order isomorphism on the elements results in another independent indexed family.

            @[deprecated iSupIndep.map_orderIso]
            theorem CompleteLattice.Independent.map_orderIso {ι : Sort u_5} {α : Type u_6} {β : Type u_7} [CompleteLattice α] [CompleteLattice β] (f : α ≃o β) {a : ια} (ha : iSupIndep a) :
            iSupIndep (f a)

            Alias of iSupIndep.map_orderIso.


            Composing an independent indexed family with an order isomorphism on the elements results in another independent indexed family.

            @[simp]
            theorem iSupIndep_map_orderIso_iff {ι : Sort u_5} {α : Type u_6} {β : Type u_7} [CompleteLattice α] [CompleteLattice β] (f : α ≃o β) {a : ια} :
            @[deprecated iSupIndep_map_orderIso_iff]
            theorem CompleteLattice.independent_map_orderIso_iff {ι : Sort u_5} {α : Type u_6} {β : Type u_7} [CompleteLattice α] [CompleteLattice β] (f : α ≃o β) {a : ια} :

            Alias of iSupIndep_map_orderIso_iff.

            theorem iSupIndep.disjoint_biSup {ι : Type u_5} {α : Type u_6} [CompleteLattice α] {t : ια} (ht : iSupIndep t) {x : ι} {y : Set ι} (hx : xy) :
            Disjoint (t x) (⨆ iy, t i)

            If the elements of a set are independent, then any element is disjoint from the iSup of some subset of the rest.

            @[deprecated iSupIndep.disjoint_biSup]
            theorem CompleteLattice.Independent.disjoint_biSup {ι : Type u_5} {α : Type u_6} [CompleteLattice α] {t : ια} (ht : iSupIndep t) {x : ι} {y : Set ι} (hx : xy) :
            Disjoint (t x) (⨆ iy, t i)

            Alias of iSupIndep.disjoint_biSup.


            If the elements of a set are independent, then any element is disjoint from the iSup of some subset of the rest.

            theorem iSupIndep.of_coe_Iic_comp {α : Type u_1} [CompleteLattice α] {ι : Sort u_5} {a : α} {t : ι(Set.Iic a)} (ht : iSupIndep (Subtype.val t)) :
            @[deprecated iSupIndep.of_coe_Iic_comp]
            theorem CompleteLattice.independent_of_independent_coe_Iic_comp {α : Type u_1} [CompleteLattice α] {ι : Sort u_5} {a : α} {t : ι(Set.Iic a)} (ht : iSupIndep (Subtype.val t)) :

            Alias of iSupIndep.of_coe_Iic_comp.

            theorem iSupIndep_iff_supIndep {α : Type u_1} {ι : Type u_3} [CompleteLattice α] {s : Finset ι} {f : ια} :
            iSupIndep (f Subtype.val) s.SupIndep f
            @[deprecated iSupIndep_iff_supIndep]
            theorem CompleteLattice.independent_iff_supIndep {α : Type u_1} {ι : Type u_3} [CompleteLattice α] {s : Finset ι} {f : ια} :
            iSupIndep (f Subtype.val) s.SupIndep f

            Alias of iSupIndep_iff_supIndep.

            theorem iSupIndep.supIndep {α : Type u_1} {ι : Type u_3} [CompleteLattice α] {s : Finset ι} {f : ια} :
            iSupIndep (f Subtype.val)s.SupIndep f

            Alias of the forward direction of iSupIndep_iff_supIndep.

            theorem Finset.SupIndep.independent {α : Type u_1} {ι : Type u_3} [CompleteLattice α] {s : Finset ι} {f : ια} :
            s.SupIndep fiSupIndep (f Subtype.val)

            Alias of the reverse direction of iSupIndep_iff_supIndep.

            theorem iSupIndep.supIndep' {α : Type u_1} {ι : Type u_3} [CompleteLattice α] {f : ια} (s : Finset ι) (h : iSupIndep f) :
            s.SupIndep f
            @[deprecated iSupIndep.supIndep']
            theorem CompleteLattice.Independent.supIndep' {α : Type u_1} {ι : Type u_3} [CompleteLattice α] {f : ια} (s : Finset ι) (h : iSupIndep f) :
            s.SupIndep f

            Alias of iSupIndep.supIndep'.

            theorem iSupIndep_iff_supIndep_univ {α : Type u_1} {ι : Type u_3} [CompleteLattice α] [Fintype ι] {f : ια} :
            iSupIndep f Finset.univ.SupIndep f

            A variant of CompleteLattice.iSupIndep_iff_supIndep for Fintypes.

            @[deprecated iSupIndep_iff_supIndep_univ]
            theorem CompleteLattice.independent_iff_supIndep_univ {α : Type u_1} {ι : Type u_3} [CompleteLattice α] [Fintype ι] {f : ια} :
            iSupIndep f Finset.univ.SupIndep f

            Alias of iSupIndep_iff_supIndep_univ.


            A variant of CompleteLattice.iSupIndep_iff_supIndep for Fintypes.

            theorem Finset.SupIndep.iSupIndep_of_univ {α : Type u_1} {ι : Type u_3} [CompleteLattice α] [Fintype ι] {f : ια} :
            Finset.univ.SupIndep fiSupIndep f

            Alias of the reverse direction of iSupIndep_iff_supIndep_univ.


            A variant of CompleteLattice.iSupIndep_iff_supIndep for Fintypes.

            theorem iSupIndep.sup_indep_univ {α : Type u_1} {ι : Type u_3} [CompleteLattice α] [Fintype ι] {f : ια} :
            iSupIndep fFinset.univ.SupIndep f

            Alias of the forward direction of iSupIndep_iff_supIndep_univ.


            A variant of CompleteLattice.iSupIndep_iff_supIndep for Fintypes.

            theorem sSupIndep_iff_pairwiseDisjoint {α : Type u_1} [Order.Frame α] {s : Set α} :
            sSupIndep s s.PairwiseDisjoint id
            @[deprecated sSupIndep_iff_pairwiseDisjoint]
            theorem setIndependent_iff_pairwiseDisjoint {α : Type u_1} [Order.Frame α] {s : Set α} :
            sSupIndep s s.PairwiseDisjoint id

            Alias of sSupIndep_iff_pairwiseDisjoint.

            theorem Set.PairwiseDisjoint.sSupIndep {α : Type u_1} [Order.Frame α] {s : Set α} :
            s.PairwiseDisjoint idsSupIndep s

            Alias of the reverse direction of sSupIndep_iff_pairwiseDisjoint.

            theorem iSupIndep_iff_pairwiseDisjoint {α : Type u_1} {ι : Type u_3} [Order.Frame α] {f : ια} :
            iSupIndep f Pairwise (Disjoint on f)
            @[deprecated iSupIndep_iff_pairwiseDisjoint]
            theorem independent_iff_pairwiseDisjoint {α : Type u_1} {ι : Type u_3} [Order.Frame α] {f : ια} :
            iSupIndep f Pairwise (Disjoint on f)

            Alias of iSupIndep_iff_pairwiseDisjoint.