HepLean Documentation

Mathlib.Tactic.CategoryTheory.Monoidal.Normalize

Normalization of morphisms in monoidal categories #

This file provides the implementation of the normalization given in Mathlib.Tactic.CategoryTheory.Coherence.Normalize. See this file for more details.

theorem Mathlib.Tactic.Monoidal.evalComp_nil_nil {C : Type u} [CategoryTheory.Category.{v, u} C] {f : C} {g : C} {h : C} (α : f g) (β : g h) :
(α ≪≫ β).hom = (α ≪≫ β).hom
theorem Mathlib.Tactic.Monoidal.eval_comp {C : Type u} [CategoryTheory.Category.{v, u} C] {f : C} {g : C} {h : C} {η : f g} {η' : f g} {θ : g h} {θ' : g h} {ι : f h} (e_η : η = η') (e_θ : θ = θ') (e_ηθ : CategoryTheory.CategoryStruct.comp η' θ' = ι) :
theorem Mathlib.Tactic.Monoidal.eval_monoidalComp {C : Type u} [CategoryTheory.Category.{v, u} C] {f : C} {g : C} {h : C} {i : C} {η : f g} {η' : f g} {α : g h} {θ : h i} {θ' : h i} {αθ : g i} {ηαθ : f i} (e_η : η = η') (e_θ : θ = θ') (e_αθ : CategoryTheory.CategoryStruct.comp α.hom θ' = αθ) (e_ηαθ : CategoryTheory.CategoryStruct.comp η' αθ = ηαθ) :
theorem Mathlib.Tactic.Monoidal.eval_tensorHom {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.MonoidalCategory C] {f : C} {g : C} {h : C} {i : C} {η : f g} {η' : f g} {θ : h i} {θ' : h i} {ι : CategoryTheory.MonoidalCategory.tensorObj f h CategoryTheory.MonoidalCategory.tensorObj g i} (e_η : η = η') (e_θ : θ = θ') (e_ι : CategoryTheory.MonoidalCategory.tensorHom η' θ' = ι) :
theorem Mathlib.Tactic.Monoidal.evalWhiskerRight_cons_whisker {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.MonoidalCategory C] {f : C} {g : C} {h : C} {i : C} {j : C} {k : C} {α : g CategoryTheory.MonoidalCategory.tensorObj f h} {η : h i} {ηs : CategoryTheory.MonoidalCategory.tensorObj f i j} {η₁ : CategoryTheory.MonoidalCategory.tensorObj h k CategoryTheory.MonoidalCategory.tensorObj i k} {η₂ : CategoryTheory.MonoidalCategory.tensorObj f (CategoryTheory.MonoidalCategory.tensorObj h k) CategoryTheory.MonoidalCategory.tensorObj f (CategoryTheory.MonoidalCategory.tensorObj i k)} {ηs₁ : CategoryTheory.MonoidalCategory.tensorObj (CategoryTheory.MonoidalCategory.tensorObj f i) k CategoryTheory.MonoidalCategory.tensorObj j k} {ηs₂ : CategoryTheory.MonoidalCategory.tensorObj f (CategoryTheory.MonoidalCategory.tensorObj i k) CategoryTheory.MonoidalCategory.tensorObj j k} {η₃ : CategoryTheory.MonoidalCategory.tensorObj f (CategoryTheory.MonoidalCategory.tensorObj h k) CategoryTheory.MonoidalCategory.tensorObj j k} {η₄ : CategoryTheory.MonoidalCategory.tensorObj (CategoryTheory.MonoidalCategory.tensorObj f h) k CategoryTheory.MonoidalCategory.tensorObj j k} {η₅ : CategoryTheory.MonoidalCategory.tensorObj g k CategoryTheory.MonoidalCategory.tensorObj j k} (e_η₁ : CategoryTheory.MonoidalCategory.whiskerRight (CategoryTheory.CategoryStruct.comp (CategoryTheory.Iso.refl h).hom (CategoryTheory.CategoryStruct.comp η (CategoryTheory.Iso.refl i).hom)) k = η₁) (e_η₂ : CategoryTheory.MonoidalCategory.whiskerLeft f η₁ = η₂) (e_ηs₁ : CategoryTheory.MonoidalCategory.whiskerRight ηs k = ηs₁) (e_ηs₂ : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator f i k).inv ηs₁ = ηs₂) (e_η₃ : CategoryTheory.CategoryStruct.comp η₂ ηs₂ = η₃) (e_η₄ : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator f h k).hom η₃ = η₄) (e_η₅ : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.whiskerRightIso α k).hom η₄ = η₅) :
theorem Mathlib.Tactic.Monoidal.evalWhiskerRightAux_cons {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.MonoidalCategory C] {f : C} {g : C} {h : C} {i : C} {j : C} {η : g h} {ηs : i j} {ηs' : CategoryTheory.MonoidalCategory.tensorObj i f CategoryTheory.MonoidalCategory.tensorObj j f} {η₁ : CategoryTheory.MonoidalCategory.tensorObj g (CategoryTheory.MonoidalCategory.tensorObj i f) CategoryTheory.MonoidalCategory.tensorObj h (CategoryTheory.MonoidalCategory.tensorObj j f)} {η₂ : CategoryTheory.MonoidalCategory.tensorObj g (CategoryTheory.MonoidalCategory.tensorObj i f) CategoryTheory.MonoidalCategory.tensorObj (CategoryTheory.MonoidalCategory.tensorObj h j) f} {η₃ : CategoryTheory.MonoidalCategory.tensorObj (CategoryTheory.MonoidalCategory.tensorObj g i) f CategoryTheory.MonoidalCategory.tensorObj (CategoryTheory.MonoidalCategory.tensorObj h j) f} (e_ηs' : CategoryTheory.MonoidalCategory.whiskerRight ηs f = ηs') (e_η₁ : CategoryTheory.MonoidalCategory.tensorHom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Iso.refl g).hom (CategoryTheory.CategoryStruct.comp η (CategoryTheory.Iso.refl h).hom)) ηs' = η₁) (e_η₂ : CategoryTheory.CategoryStruct.comp η₁ (CategoryTheory.MonoidalCategory.associator h j f).inv = η₂) (e_η₃ : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator g i f).hom η₂ = η₃) :
theorem Mathlib.Tactic.Monoidal.evalHorizontalCompAux_cons {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.MonoidalCategory C] {f : C} {f' : C} {g : C} {g' : C} {h : C} {i : C} {η : f g} {ηs : f' g'} {θ : h i} {ηθ : CategoryTheory.MonoidalCategory.tensorObj f' h CategoryTheory.MonoidalCategory.tensorObj g' i} {η₁ : CategoryTheory.MonoidalCategory.tensorObj f (CategoryTheory.MonoidalCategory.tensorObj f' h) CategoryTheory.MonoidalCategory.tensorObj g (CategoryTheory.MonoidalCategory.tensorObj g' i)} {ηθ₁ : CategoryTheory.MonoidalCategory.tensorObj f (CategoryTheory.MonoidalCategory.tensorObj f' h) CategoryTheory.MonoidalCategory.tensorObj (CategoryTheory.MonoidalCategory.tensorObj g g') i} {ηθ₂ : CategoryTheory.MonoidalCategory.tensorObj (CategoryTheory.MonoidalCategory.tensorObj f f') h CategoryTheory.MonoidalCategory.tensorObj (CategoryTheory.MonoidalCategory.tensorObj g g') i} (e_ηθ : CategoryTheory.MonoidalCategory.tensorHom ηs θ = ηθ) (e_η₁ : CategoryTheory.MonoidalCategory.tensorHom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Iso.refl f).hom (CategoryTheory.CategoryStruct.comp η (CategoryTheory.Iso.refl g).hom)) ηθ = η₁) (e_ηθ₁ : CategoryTheory.CategoryStruct.comp η₁ (CategoryTheory.MonoidalCategory.associator g g' i).inv = ηθ₁) (e_ηθ₂ : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator f f' h).hom ηθ₁ = ηθ₂) :
theorem Mathlib.Tactic.Monoidal.evalHorizontalCompAux'_of_whisker {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.MonoidalCategory C] {f : C} {f' : C} {g : C} {g' : C} {h : C} {η : g h} {θ : f' g'} {η₁ : CategoryTheory.MonoidalCategory.tensorObj g f CategoryTheory.MonoidalCategory.tensorObj h f} {ηθ : CategoryTheory.MonoidalCategory.tensorObj (CategoryTheory.MonoidalCategory.tensorObj g f) f' CategoryTheory.MonoidalCategory.tensorObj (CategoryTheory.MonoidalCategory.tensorObj h f) g'} {ηθ₁ : CategoryTheory.MonoidalCategory.tensorObj (CategoryTheory.MonoidalCategory.tensorObj g f) f' CategoryTheory.MonoidalCategory.tensorObj h (CategoryTheory.MonoidalCategory.tensorObj f g')} {ηθ₂ : CategoryTheory.MonoidalCategory.tensorObj g (CategoryTheory.MonoidalCategory.tensorObj f f') CategoryTheory.MonoidalCategory.tensorObj h (CategoryTheory.MonoidalCategory.tensorObj f g')} (e_η₁ : CategoryTheory.MonoidalCategory.whiskerRight η f = η₁) (e_ηθ : CategoryTheory.MonoidalCategory.tensorHom η₁ (CategoryTheory.CategoryStruct.comp (CategoryTheory.Iso.refl f').hom (CategoryTheory.CategoryStruct.comp θ (CategoryTheory.Iso.refl g').hom)) = ηθ) (e_ηθ₁ : CategoryTheory.CategoryStruct.comp ηθ (CategoryTheory.MonoidalCategory.associator h f g').hom = ηθ₁) (e_ηθ₂ : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator g f f').inv ηθ₁ = ηθ₂) :
theorem Mathlib.Tactic.Monoidal.evalHorizontalComp_nil_nil {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.MonoidalCategory C] {f : C} {g : C} {h : C} {i : C} (α : f g) (β : h i) :
(α β).hom = (α β).hom
Equations
  • One or more equations did not get rendered due to their size.