Algebraic operations on SeparationQuotient
#
In this file we define algebraic operations (multiplication, addition etc) on the separation quotient of a topological space with corresponding operation, provided that the original operation is continuous.
We also prove continuity of these operations
and show that they satisfy the same kind of laws (Monoid
etc) as the original ones.
Finally, we construct a section of the quotient map
which is a continuous linear map SeparationQuotient E →L[K] E
.
instance
SeparationQuotient.instVAdd
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[VAdd M X]
[ContinuousConstVAdd M X]
:
VAdd M (SeparationQuotient X)
Equations
- SeparationQuotient.instVAdd = { vadd := fun (c : M) => Quotient.map' (fun (x : X) => c +ᵥ x) ⋯ }
instance
SeparationQuotient.instSMul
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[SMul M X]
[ContinuousConstSMul M X]
:
SMul M (SeparationQuotient X)
Equations
- SeparationQuotient.instSMul = { smul := fun (c : M) => Quotient.map' (fun (x : X) => c • x) ⋯ }
@[simp]
theorem
SeparationQuotient.mk_vadd
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[VAdd M X]
[ContinuousConstVAdd M X]
(c : M)
(x : X)
:
SeparationQuotient.mk (c +ᵥ x) = c +ᵥ SeparationQuotient.mk x
@[simp]
theorem
SeparationQuotient.mk_smul
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[SMul M X]
[ContinuousConstSMul M X]
(c : M)
(x : X)
:
SeparationQuotient.mk (c • x) = c • SeparationQuotient.mk x
instance
SeparationQuotient.instContinuousConstVAdd
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[VAdd M X]
[ContinuousConstVAdd M X]
:
Equations
- ⋯ = ⋯
instance
SeparationQuotient.instContinuousConstSMul
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[SMul M X]
[ContinuousConstSMul M X]
:
Equations
- ⋯ = ⋯
instance
SeparationQuotient.instIsPretransitiveVAdd
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[VAdd M X]
[ContinuousConstVAdd M X]
[AddAction.IsPretransitive M X]
:
Equations
- ⋯ = ⋯
instance
SeparationQuotient.instIsPretransitiveSMul
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[SMul M X]
[ContinuousConstSMul M X]
[MulAction.IsPretransitive M X]
:
Equations
- ⋯ = ⋯
instance
SeparationQuotient.instIsCentralVAdd
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[VAdd M X]
[ContinuousConstVAdd M X]
[VAdd Mᵃᵒᵖ X]
[IsCentralVAdd M X]
:
Equations
- ⋯ = ⋯
instance
SeparationQuotient.instIsCentralScalar
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[SMul M X]
[ContinuousConstSMul M X]
[SMul Mᵐᵒᵖ X]
[IsCentralScalar M X]
:
Equations
- ⋯ = ⋯
instance
SeparationQuotient.instVAddCommClass
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[VAdd M X]
[ContinuousConstVAdd M X]
{N : Type u_3}
[VAdd N X]
[ContinuousConstVAdd N X]
[VAddCommClass M N X]
:
VAddCommClass M N (SeparationQuotient X)
Equations
- ⋯ = ⋯
instance
SeparationQuotient.instSMulCommClass
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[SMul M X]
[ContinuousConstSMul M X]
{N : Type u_3}
[SMul N X]
[ContinuousConstSMul N X]
[SMulCommClass M N X]
:
SMulCommClass M N (SeparationQuotient X)
Equations
- ⋯ = ⋯
instance
SeparationQuotient.instVAddAssocClass
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[VAdd M X]
[ContinuousConstVAdd M X]
{N : Type u_3}
[VAdd N X]
[VAdd M N]
[ContinuousConstVAdd N X]
[VAddAssocClass M N X]
:
VAddAssocClass M N (SeparationQuotient X)
Equations
- ⋯ = ⋯
instance
SeparationQuotient.instIsScalarTower
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[SMul M X]
[ContinuousConstSMul M X]
{N : Type u_3}
[SMul N X]
[SMul M N]
[ContinuousConstSMul N X]
[IsScalarTower M N X]
:
IsScalarTower M N (SeparationQuotient X)
Equations
- ⋯ = ⋯
instance
SeparationQuotient.instContinuousSMul
{M : Type u_1}
{X : Type u_2}
[SMul M X]
[TopologicalSpace M]
[TopologicalSpace X]
[ContinuousSMul M X]
:
Equations
- ⋯ = ⋯
instance
SeparationQuotient.instSMulZeroClass
{M : Type u_1}
{X : Type u_2}
[Zero X]
[SMulZeroClass M X]
[TopologicalSpace X]
[ContinuousConstSMul M X]
:
Equations
- SeparationQuotient.instSMulZeroClass = { toFun := SeparationQuotient.mk, map_zero' := ⋯ }.smulZeroClass ⋯
instance
SeparationQuotient.instAddAction
{M : Type u_1}
{X : Type u_2}
[AddMonoid M]
[AddAction M X]
[TopologicalSpace X]
[ContinuousConstVAdd M X]
:
AddAction M (SeparationQuotient X)
Equations
- SeparationQuotient.instAddAction = Function.Surjective.addAction SeparationQuotient.mk ⋯ ⋯
theorem
SeparationQuotient.instAddAction.proof_1
{M : Type u_2}
{X : Type u_1}
[AddMonoid M]
[AddAction M X]
[TopologicalSpace X]
[ContinuousConstVAdd M X]
(c : M)
(x : X)
:
SeparationQuotient.mk (c +ᵥ x) = c +ᵥ SeparationQuotient.mk x
instance
SeparationQuotient.instMulAction
{M : Type u_1}
{X : Type u_2}
[Monoid M]
[MulAction M X]
[TopologicalSpace X]
[ContinuousConstSMul M X]
:
MulAction M (SeparationQuotient X)
Equations
- SeparationQuotient.instMulAction = Function.Surjective.mulAction SeparationQuotient.mk ⋯ ⋯
Equations
- SeparationQuotient.instAdd = { add := Quotient.map₂' (fun (x1 x2 : M) => x1 + x2) ⋯ }
Equations
- SeparationQuotient.instMul = { mul := Quotient.map₂' (fun (x1 x2 : M) => x1 * x2) ⋯ }
@[simp]
theorem
SeparationQuotient.mk_add
{M : Type u_1}
[TopologicalSpace M]
[Add M]
[ContinuousAdd M]
(a : M)
(b : M)
:
@[simp]
theorem
SeparationQuotient.mk_mul
{M : Type u_1}
[TopologicalSpace M]
[Mul M]
[ContinuousMul M]
(a : M)
(b : M)
:
instance
SeparationQuotient.instContinuousAdd
{M : Type u_1}
[TopologicalSpace M]
[Add M]
[ContinuousAdd M]
:
Equations
- ⋯ = ⋯
instance
SeparationQuotient.instContinuousMul
{M : Type u_1}
[TopologicalSpace M]
[Mul M]
[ContinuousMul M]
:
Equations
- ⋯ = ⋯
theorem
SeparationQuotient.instAddCommMagma.proof_1
{M : Type u_1}
[TopologicalSpace M]
[AddCommMagma M]
[ContinuousAdd M]
(a : M)
(b : M)
:
instance
SeparationQuotient.instAddCommMagma
{M : Type u_1}
[TopologicalSpace M]
[AddCommMagma M]
[ContinuousAdd M]
:
Equations
- SeparationQuotient.instAddCommMagma = Function.Surjective.addCommMagma SeparationQuotient.mk ⋯ ⋯
instance
SeparationQuotient.instCommMagma
{M : Type u_1}
[TopologicalSpace M]
[CommMagma M]
[ContinuousMul M]
:
Equations
- SeparationQuotient.instCommMagma = Function.Surjective.commMagma SeparationQuotient.mk ⋯ ⋯
theorem
SeparationQuotient.instAddSemigroup.proof_1
{M : Type u_1}
[TopologicalSpace M]
[AddSemigroup M]
[ContinuousAdd M]
(a : M)
(b : M)
:
instance
SeparationQuotient.instAddSemigroup
{M : Type u_1}
[TopologicalSpace M]
[AddSemigroup M]
[ContinuousAdd M]
:
Equations
- SeparationQuotient.instAddSemigroup = Function.Surjective.addSemigroup SeparationQuotient.mk ⋯ ⋯
instance
SeparationQuotient.instSemigroup
{M : Type u_1}
[TopologicalSpace M]
[Semigroup M]
[ContinuousMul M]
:
Equations
- SeparationQuotient.instSemigroup = Function.Surjective.semigroup SeparationQuotient.mk ⋯ ⋯
instance
SeparationQuotient.instAddCommSemigroup
{M : Type u_1}
[TopologicalSpace M]
[AddCommSemigroup M]
[ContinuousAdd M]
:
Equations
- SeparationQuotient.instAddCommSemigroup = Function.Surjective.addCommSemigroup SeparationQuotient.mk ⋯ ⋯
theorem
SeparationQuotient.instAddCommSemigroup.proof_1
{M : Type u_1}
[TopologicalSpace M]
[AddCommSemigroup M]
[ContinuousAdd M]
(a : M)
(b : M)
:
instance
SeparationQuotient.instCommSemigroup
{M : Type u_1}
[TopologicalSpace M]
[CommSemigroup M]
[ContinuousMul M]
:
Equations
- SeparationQuotient.instCommSemigroup = Function.Surjective.commSemigroup SeparationQuotient.mk ⋯ ⋯
instance
SeparationQuotient.instAddZeroClass
{M : Type u_1}
[TopologicalSpace M]
[AddZeroClass M]
[ContinuousAdd M]
:
Equations
- SeparationQuotient.instAddZeroClass = Function.Surjective.addZeroClass SeparationQuotient.mk ⋯ ⋯ ⋯
theorem
SeparationQuotient.instAddZeroClass.proof_2
{M : Type u_1}
[TopologicalSpace M]
[AddZeroClass M]
[ContinuousAdd M]
(a : M)
(b : M)
:
theorem
SeparationQuotient.instAddZeroClass.proof_1
{M : Type u_1}
[TopologicalSpace M]
[AddZeroClass M]
:
instance
SeparationQuotient.instMulOneClass
{M : Type u_1}
[TopologicalSpace M]
[MulOneClass M]
[ContinuousMul M]
:
Equations
- SeparationQuotient.instMulOneClass = Function.Surjective.mulOneClass SeparationQuotient.mk ⋯ ⋯ ⋯
theorem
SeparationQuotient.mkAddMonoidHom.proof_2
{M : Type u_1}
[TopologicalSpace M]
[AddZeroClass M]
[ContinuousAdd M]
(a : M)
(b : M)
:
theorem
SeparationQuotient.mkAddMonoidHom.proof_1
{M : Type u_1}
[TopologicalSpace M]
[AddZeroClass M]
:
def
SeparationQuotient.mkAddMonoidHom
{M : Type u_1}
[TopologicalSpace M]
[AddZeroClass M]
[ContinuousAdd M]
:
M →+ SeparationQuotient M
SeparationQuotient.mk
as an AddMonoidHom
.
Equations
- SeparationQuotient.mkAddMonoidHom = { toFun := SeparationQuotient.mk, map_zero' := ⋯, map_add' := ⋯ }
Instances For
@[simp]
theorem
SeparationQuotient.mkAddMonoidHom_apply
{M : Type u_1}
[TopologicalSpace M]
[AddZeroClass M]
[ContinuousAdd M]
:
∀ (a : M), SeparationQuotient.mkAddMonoidHom a = SeparationQuotient.mk a
@[simp]
theorem
SeparationQuotient.mkMonoidHom_apply
{M : Type u_1}
[TopologicalSpace M]
[MulOneClass M]
[ContinuousMul M]
:
∀ (a : M), SeparationQuotient.mkMonoidHom a = SeparationQuotient.mk a
def
SeparationQuotient.mkMonoidHom
{M : Type u_1}
[TopologicalSpace M]
[MulOneClass M]
[ContinuousMul M]
:
M →* SeparationQuotient M
SeparationQuotient.mk
as a MonoidHom
.
Equations
- SeparationQuotient.mkMonoidHom = { toFun := SeparationQuotient.mk, map_one' := ⋯, map_mul' := ⋯ }
Instances For
instance
SeparationQuotient.instNSmul
{M : Type u_1}
[TopologicalSpace M]
[AddMonoid M]
[ContinuousAdd M]
:
SMul ℕ (SeparationQuotient M)
Equations
- SeparationQuotient.instNSmul = inferInstance
instance
SeparationQuotient.instPow
{M : Type u_1}
[TopologicalSpace M]
[Monoid M]
[ContinuousMul M]
:
Pow (SeparationQuotient M) ℕ
Equations
- SeparationQuotient.instPow = { pow := fun (x : SeparationQuotient M) (n : ℕ) => Quotient.map' (fun (x : M) => x ^ n) ⋯ x }
theorem
SeparationQuotient.mk_nsmul
{M : Type u_1}
[TopologicalSpace M]
[AddMonoid M]
[ContinuousAdd M]
(x : M)
(n : ℕ)
:
SeparationQuotient.mk (n • x) = n • SeparationQuotient.mk x
@[simp]
theorem
SeparationQuotient.mk_pow
{M : Type u_1}
[TopologicalSpace M]
[Monoid M]
[ContinuousMul M]
(x : M)
(n : ℕ)
:
SeparationQuotient.mk (x ^ n) = SeparationQuotient.mk x ^ n
instance
SeparationQuotient.instAddMonoid
{M : Type u_1}
[TopologicalSpace M]
[AddMonoid M]
[ContinuousAdd M]
:
Equations
- SeparationQuotient.instAddMonoid = Function.Surjective.addMonoid SeparationQuotient.mk ⋯ ⋯ ⋯ ⋯
theorem
SeparationQuotient.instAddMonoid.proof_2
{M : Type u_1}
[TopologicalSpace M]
[AddMonoid M]
[ContinuousAdd M]
(a : M)
(b : M)
:
theorem
SeparationQuotient.instAddMonoid.proof_1
{M : Type u_1}
[TopologicalSpace M]
[AddMonoid M]
:
instance
SeparationQuotient.instMonoid
{M : Type u_1}
[TopologicalSpace M]
[Monoid M]
[ContinuousMul M]
:
Equations
- SeparationQuotient.instMonoid = Function.Surjective.monoid SeparationQuotient.mk ⋯ ⋯ ⋯ ⋯
theorem
SeparationQuotient.instAddCommMonoid.proof_3
{M : Type u_1}
[TopologicalSpace M]
[AddCommMonoid M]
[ContinuousAdd M]
(x : M)
(n : ℕ)
:
SeparationQuotient.mk (n • x) = n • SeparationQuotient.mk x
instance
SeparationQuotient.instAddCommMonoid
{M : Type u_1}
[TopologicalSpace M]
[AddCommMonoid M]
[ContinuousAdd M]
:
Equations
- SeparationQuotient.instAddCommMonoid = Function.Surjective.addCommMonoid SeparationQuotient.mk ⋯ ⋯ ⋯ ⋯
theorem
SeparationQuotient.instAddCommMonoid.proof_2
{M : Type u_1}
[TopologicalSpace M]
[AddCommMonoid M]
[ContinuousAdd M]
(a : M)
(b : M)
:
theorem
SeparationQuotient.instAddCommMonoid.proof_1
{M : Type u_1}
[TopologicalSpace M]
[AddCommMonoid M]
:
instance
SeparationQuotient.instCommMonoid
{M : Type u_1}
[TopologicalSpace M]
[CommMonoid M]
[ContinuousMul M]
:
Equations
- SeparationQuotient.instCommMonoid = Function.Surjective.commMonoid SeparationQuotient.mk ⋯ ⋯ ⋯ ⋯
Equations
- SeparationQuotient.instNeg = { neg := Quotient.map' (fun (x : G) => -x) ⋯ }
Equations
- SeparationQuotient.instInv = { inv := Quotient.map' (fun (x : G) => x⁻¹) ⋯ }
@[simp]
theorem
SeparationQuotient.mk_neg
{G : Type u_1}
[TopologicalSpace G]
[Neg G]
[ContinuousNeg G]
(x : G)
:
@[simp]
theorem
SeparationQuotient.mk_inv
{G : Type u_1}
[TopologicalSpace G]
[Inv G]
[ContinuousInv G]
(x : G)
:
instance
SeparationQuotient.instContinuousNeg
{G : Type u_1}
[TopologicalSpace G]
[Neg G]
[ContinuousNeg G]
:
Equations
- ⋯ = ⋯
instance
SeparationQuotient.instContinuousInv
{G : Type u_1}
[TopologicalSpace G]
[Inv G]
[ContinuousInv G]
:
Equations
- ⋯ = ⋯
theorem
SeparationQuotient.instInvolutiveNeg.proof_1
{G : Type u_1}
[TopologicalSpace G]
[InvolutiveNeg G]
[ContinuousNeg G]
(x : G)
:
instance
SeparationQuotient.instInvolutiveNeg
{G : Type u_1}
[TopologicalSpace G]
[InvolutiveNeg G]
[ContinuousNeg G]
:
Equations
- SeparationQuotient.instInvolutiveNeg = Function.Surjective.involutiveNeg SeparationQuotient.mk ⋯ ⋯
instance
SeparationQuotient.instInvolutiveInv
{G : Type u_1}
[TopologicalSpace G]
[InvolutiveInv G]
[ContinuousInv G]
:
Equations
- SeparationQuotient.instInvolutiveInv = Function.Surjective.involutiveInv SeparationQuotient.mk ⋯ ⋯
instance
SeparationQuotient.instNegZeroClass
{G : Type u_1}
[TopologicalSpace G]
[NegZeroClass G]
[ContinuousNeg G]
:
Equations
- SeparationQuotient.instNegZeroClass = NegZeroClass.mk ⋯
theorem
SeparationQuotient.instNegZeroClass.proof_1
{G : Type u_1}
[TopologicalSpace G]
[NegZeroClass G]
:
SeparationQuotient.mk ((fun (x : G) => -x) 0) = SeparationQuotient.mk 0
instance
SeparationQuotient.instInvOneClass
{G : Type u_1}
[TopologicalSpace G]
[InvOneClass G]
[ContinuousInv G]
:
Equations
- SeparationQuotient.instInvOneClass = InvOneClass.mk ⋯
Equations
- SeparationQuotient.instSub = { sub := Quotient.map₂' (fun (x1 x2 : G) => x1 - x2) ⋯ }
theorem
SeparationQuotient.instSub.proof_1
{G : Type u_1}
[TopologicalSpace G]
[Sub G]
[ContinuousSub G]
:
∀ (x x_1 : G),
(inseparableSetoid G) x x_1 →
∀ (x_2 x_3 : G), (inseparableSetoid G) x_2 x_3 → Inseparable ((x, x_2).1 - (x, x_2).2) ((x_1, x_3).1 - (x_1, x_3).2)
Equations
- SeparationQuotient.instDiv = { div := Quotient.map₂' (fun (x1 x2 : G) => x1 / x2) ⋯ }
@[simp]
theorem
SeparationQuotient.mk_sub
{G : Type u_1}
[TopologicalSpace G]
[Sub G]
[ContinuousSub G]
(x : G)
(y : G)
:
@[simp]
theorem
SeparationQuotient.mk_div
{G : Type u_1}
[TopologicalSpace G]
[Div G]
[ContinuousDiv G]
(x : G)
(y : G)
:
instance
SeparationQuotient.instContinuousSub
{G : Type u_1}
[TopologicalSpace G]
[Sub G]
[ContinuousSub G]
:
Equations
- ⋯ = ⋯
instance
SeparationQuotient.instContinuousDiv
{G : Type u_1}
[TopologicalSpace G]
[Div G]
[ContinuousDiv G]
:
Equations
- ⋯ = ⋯
instance
SeparationQuotient.instZSMul
{G : Type u_1}
[TopologicalSpace G]
[AddGroup G]
[TopologicalAddGroup G]
:
SMul ℤ (SeparationQuotient G)
Equations
- SeparationQuotient.instZSMul = inferInstance
instance
SeparationQuotient.instZPow
{G : Type u_1}
[TopologicalSpace G]
[Group G]
[TopologicalGroup G]
:
Pow (SeparationQuotient G) ℤ
Equations
- SeparationQuotient.instZPow = { pow := fun (x : SeparationQuotient G) (n : ℤ) => Quotient.map' (fun (x : G) => x ^ n) ⋯ x }
theorem
SeparationQuotient.mk_zsmul
{G : Type u_1}
[TopologicalSpace G]
[AddGroup G]
[TopologicalAddGroup G]
(x : G)
(n : ℤ)
:
SeparationQuotient.mk (n • x) = n • SeparationQuotient.mk x
@[simp]
theorem
SeparationQuotient.mk_zpow
{G : Type u_1}
[TopologicalSpace G]
[Group G]
[TopologicalGroup G]
(x : G)
(n : ℤ)
:
SeparationQuotient.mk (x ^ n) = SeparationQuotient.mk x ^ n
theorem
SeparationQuotient.instAddGroup.proof_3
{G : Type u_1}
[TopologicalSpace G]
[AddGroup G]
[TopologicalAddGroup G]
(x : G)
:
instance
SeparationQuotient.instAddGroup
{G : Type u_1}
[TopologicalSpace G]
[AddGroup G]
[TopologicalAddGroup G]
:
Equations
- SeparationQuotient.instAddGroup = Function.Surjective.addGroup SeparationQuotient.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
theorem
SeparationQuotient.instAddGroup.proof_5
{G : Type u_1}
[TopologicalSpace G]
[AddGroup G]
[TopologicalAddGroup G]
(x : G)
(n : ℕ)
:
SeparationQuotient.mk (n • x) = n • SeparationQuotient.mk x
theorem
SeparationQuotient.instAddGroup.proof_2
{G : Type u_1}
[TopologicalSpace G]
[AddGroup G]
[TopologicalAddGroup G]
(a : G)
(b : G)
:
theorem
SeparationQuotient.instAddGroup.proof_4
{G : Type u_1}
[TopologicalSpace G]
[AddGroup G]
[TopologicalAddGroup G]
(x : G)
(y : G)
:
instance
SeparationQuotient.instGroup
{G : Type u_1}
[TopologicalSpace G]
[Group G]
[TopologicalGroup G]
:
Equations
- SeparationQuotient.instGroup = Function.Surjective.group SeparationQuotient.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
theorem
SeparationQuotient.instAddCommGroup.proof_5
{G : Type u_1}
[TopologicalSpace G]
[AddCommGroup G]
[TopologicalAddGroup G]
(a : G)
(b : G)
:
theorem
SeparationQuotient.instAddCommGroup.proof_4
{G : Type u_1}
[TopologicalSpace G]
[AddCommGroup G]
:
theorem
SeparationQuotient.instAddCommGroup.proof_6
{G : Type u_1}
[TopologicalSpace G]
[AddCommGroup G]
[TopologicalAddGroup G]
(x : G)
:
theorem
SeparationQuotient.instAddCommGroup.proof_7
{G : Type u_1}
[TopologicalSpace G]
[AddCommGroup G]
[TopologicalAddGroup G]
(x : G)
(y : G)
:
theorem
SeparationQuotient.instAddCommGroup.proof_2
{G : Type u_1}
[TopologicalSpace G]
[AddCommGroup G]
[TopologicalAddGroup G]
:
theorem
SeparationQuotient.instAddCommGroup.proof_9
{G : Type u_1}
[TopologicalSpace G]
[AddCommGroup G]
[TopologicalAddGroup G]
(x : G)
(n : ℤ)
:
SeparationQuotient.mk (n • x) = n • SeparationQuotient.mk x
theorem
SeparationQuotient.instAddCommGroup.proof_8
{G : Type u_1}
[TopologicalSpace G]
[AddCommGroup G]
[TopologicalAddGroup G]
(x : G)
(n : ℕ)
:
SeparationQuotient.mk (n • x) = n • SeparationQuotient.mk x
theorem
SeparationQuotient.instAddCommGroup.proof_3
{G : Type u_1}
[TopologicalSpace G]
[AddCommGroup G]
[TopologicalAddGroup G]
:
theorem
SeparationQuotient.instAddCommGroup.proof_1
{G : Type u_1}
[TopologicalSpace G]
[AddCommGroup G]
[TopologicalAddGroup G]
:
instance
SeparationQuotient.instAddCommGroup
{G : Type u_1}
[TopologicalSpace G]
[AddCommGroup G]
[TopologicalAddGroup G]
:
Equations
- SeparationQuotient.instAddCommGroup = Function.Surjective.addCommGroup SeparationQuotient.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
instance
SeparationQuotient.instCommGroup
{G : Type u_1}
[TopologicalSpace G]
[CommGroup G]
[TopologicalGroup G]
:
Equations
- SeparationQuotient.instCommGroup = Function.Surjective.commGroup SeparationQuotient.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
instance
SeparationQuotient.instUniformAddGroup
{G : Type u_1}
[AddGroup G]
[UniformSpace G]
[UniformAddGroup G]
:
Equations
- ⋯ = ⋯
instance
SeparationQuotient.instUniformGroup
{G : Type u_1}
[Group G]
[UniformSpace G]
[UniformGroup G]
:
Equations
- ⋯ = ⋯
instance
SeparationQuotient.instMulZeroClass
{M₀ : Type u_1}
[TopologicalSpace M₀]
[MulZeroClass M₀]
[ContinuousMul M₀]
:
Equations
- SeparationQuotient.instMulZeroClass = Function.Surjective.mulZeroClass SeparationQuotient.mk ⋯ ⋯ ⋯
instance
SeparationQuotient.instSemigroupWithZero
{M₀ : Type u_1}
[TopologicalSpace M₀]
[SemigroupWithZero M₀]
[ContinuousMul M₀]
:
Equations
- SeparationQuotient.instSemigroupWithZero = Function.Surjective.semigroupWithZero SeparationQuotient.mk ⋯ ⋯ ⋯
instance
SeparationQuotient.instMulZeroOneClass
{M₀ : Type u_1}
[TopologicalSpace M₀]
[MulZeroOneClass M₀]
[ContinuousMul M₀]
:
Equations
- SeparationQuotient.instMulZeroOneClass = Function.Surjective.mulZeroOneClass SeparationQuotient.mk ⋯ ⋯ ⋯ ⋯
instance
SeparationQuotient.instMonoidWithZero
{M₀ : Type u_1}
[TopologicalSpace M₀]
[MonoidWithZero M₀]
[ContinuousMul M₀]
:
Equations
- SeparationQuotient.instMonoidWithZero = Function.Surjective.monoidWithZero SeparationQuotient.mk ⋯ ⋯ ⋯ ⋯ ⋯
instance
SeparationQuotient.instCommMonoidWithZero
{M₀ : Type u_1}
[TopologicalSpace M₀]
[CommMonoidWithZero M₀]
[ContinuousMul M₀]
:
Equations
- SeparationQuotient.instCommMonoidWithZero = Function.Surjective.commMonoidWithZero SeparationQuotient.mk ⋯ ⋯ ⋯ ⋯ ⋯
instance
SeparationQuotient.instDistrib
{R : Type u_1}
[TopologicalSpace R]
[Distrib R]
[ContinuousMul R]
[ContinuousAdd R]
:
Equations
- SeparationQuotient.instDistrib = Function.Surjective.distrib SeparationQuotient.mk ⋯ ⋯ ⋯
instance
SeparationQuotient.instLeftDistribClass
{R : Type u_1}
[TopologicalSpace R]
[Mul R]
[Add R]
[LeftDistribClass R]
[ContinuousMul R]
[ContinuousAdd R]
:
Equations
- ⋯ = ⋯
instance
SeparationQuotient.instRightDistribClass
{R : Type u_1}
[TopologicalSpace R]
[Mul R]
[Add R]
[RightDistribClass R]
[ContinuousMul R]
[ContinuousAdd R]
:
Equations
- ⋯ = ⋯
instance
SeparationQuotient.instNonUnitalnonAssocSemiring
{R : Type u_1}
[TopologicalSpace R]
[NonUnitalNonAssocSemiring R]
[TopologicalSemiring R]
:
Equations
- SeparationQuotient.instNonUnitalnonAssocSemiring = Function.Surjective.nonUnitalNonAssocSemiring SeparationQuotient.mk ⋯ ⋯ ⋯ ⋯ ⋯
instance
SeparationQuotient.instNonUnitalSemiring
{R : Type u_1}
[TopologicalSpace R]
[NonUnitalSemiring R]
[TopologicalSemiring R]
:
Equations
- SeparationQuotient.instNonUnitalSemiring = Function.Surjective.nonUnitalSemiring SeparationQuotient.mk ⋯ ⋯ ⋯ ⋯ ⋯
Equations
- SeparationQuotient.instNatCast = { natCast := fun (n : ℕ) => SeparationQuotient.mk ↑n }
@[simp]
theorem
SeparationQuotient.mk_natCast
{R : Type u_1}
[TopologicalSpace R]
[NatCast R]
(n : ℕ)
:
SeparationQuotient.mk ↑n = ↑n
@[simp]
theorem
SeparationQuotient.mk_ofNat
{R : Type u_1}
[TopologicalSpace R]
[NatCast R]
(n : ℕ)
[n.AtLeastTwo]
:
Equations
- SeparationQuotient.instIntCast = { intCast := fun (n : ℤ) => SeparationQuotient.mk ↑n }
@[simp]
theorem
SeparationQuotient.mk_intCast
{R : Type u_1}
[TopologicalSpace R]
[IntCast R]
(n : ℤ)
:
SeparationQuotient.mk ↑n = ↑n
instance
SeparationQuotient.instNonAssocSemiring
{R : Type u_1}
[TopologicalSpace R]
[NonAssocSemiring R]
[TopologicalSemiring R]
:
Equations
- SeparationQuotient.instNonAssocSemiring = Function.Surjective.nonAssocSemiring SeparationQuotient.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
instance
SeparationQuotient.instNonUnitalNonAssocRing
{R : Type u_1}
[TopologicalSpace R]
[NonUnitalNonAssocRing R]
[TopologicalRing R]
:
Equations
- SeparationQuotient.instNonUnitalNonAssocRing = Function.Surjective.nonUnitalNonAssocRing SeparationQuotient.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
instance
SeparationQuotient.instNonUnitalRing
{R : Type u_1}
[TopologicalSpace R]
[NonUnitalRing R]
[TopologicalRing R]
:
Equations
- SeparationQuotient.instNonUnitalRing = Function.Surjective.nonUnitalRing SeparationQuotient.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
instance
SeparationQuotient.instNonAssocRing
{R : Type u_1}
[TopologicalSpace R]
[NonAssocRing R]
[TopologicalRing R]
:
Equations
- SeparationQuotient.instNonAssocRing = Function.Surjective.nonAssocRing SeparationQuotient.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
instance
SeparationQuotient.instSemiring
{R : Type u_1}
[TopologicalSpace R]
[Semiring R]
[TopologicalSemiring R]
:
Equations
- SeparationQuotient.instSemiring = Function.Surjective.semiring SeparationQuotient.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
instance
SeparationQuotient.instRing
{R : Type u_1}
[TopologicalSpace R]
[Ring R]
[TopologicalRing R]
:
Equations
- SeparationQuotient.instRing = Function.Surjective.ring SeparationQuotient.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
instance
SeparationQuotient.instNonUnitalNonAssocCommSemiring
{R : Type u_1}
[TopologicalSpace R]
[NonUnitalNonAssocCommSemiring R]
[TopologicalSemiring R]
:
Equations
- SeparationQuotient.instNonUnitalNonAssocCommSemiring = Function.Surjective.nonUnitalNonAssocCommSemiring SeparationQuotient.mk ⋯ ⋯ ⋯ ⋯ ⋯
instance
SeparationQuotient.instNonUnitalCommSemiring
{R : Type u_1}
[TopologicalSpace R]
[NonUnitalCommSemiring R]
[TopologicalSemiring R]
:
Equations
- SeparationQuotient.instNonUnitalCommSemiring = Function.Surjective.nonUnitalCommSemiring SeparationQuotient.mk ⋯ ⋯ ⋯ ⋯ ⋯
instance
SeparationQuotient.instCommSemiring
{R : Type u_1}
[TopologicalSpace R]
[CommSemiring R]
[TopologicalSemiring R]
:
Equations
- SeparationQuotient.instCommSemiring = Function.Surjective.commSemiring SeparationQuotient.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
instance
SeparationQuotient.instHasDistribNeg
{R : Type u_1}
[TopologicalSpace R]
[Mul R]
[HasDistribNeg R]
[ContinuousMul R]
[ContinuousNeg R]
:
Equations
- SeparationQuotient.instHasDistribNeg = Function.Surjective.hasDistribNeg SeparationQuotient.mk ⋯ ⋯ ⋯
instance
SeparationQuotient.instNonUnitalNonAssocCommRing
{R : Type u_1}
[TopologicalSpace R]
[NonUnitalNonAssocCommRing R]
[TopologicalRing R]
:
Equations
- SeparationQuotient.instNonUnitalNonAssocCommRing = Function.Surjective.nonUnitalNonAssocCommRing SeparationQuotient.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
instance
SeparationQuotient.instNonUnitalCommRing
{R : Type u_1}
[TopologicalSpace R]
[NonUnitalCommRing R]
[TopologicalRing R]
:
Equations
- SeparationQuotient.instNonUnitalCommRing = Function.Surjective.nonUnitalCommRing SeparationQuotient.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
instance
SeparationQuotient.instCommRing
{R : Type u_1}
[TopologicalSpace R]
[CommRing R]
[TopologicalRing R]
:
Equations
- SeparationQuotient.instCommRing = Function.Surjective.commRing SeparationQuotient.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
@[simp]
theorem
SeparationQuotient.mkRingHom_apply
{R : Type u_1}
[TopologicalSpace R]
[NonAssocSemiring R]
[TopologicalSemiring R]
:
∀ (a : R), SeparationQuotient.mkRingHom a = SeparationQuotient.mk a
def
SeparationQuotient.mkRingHom
{R : Type u_1}
[TopologicalSpace R]
[NonAssocSemiring R]
[TopologicalSemiring R]
:
SeparationQuotient.mk
as a RingHom
.
Equations
- SeparationQuotient.mkRingHom = { toFun := SeparationQuotient.mk, map_one' := ⋯, map_mul' := ⋯, map_zero' := ⋯, map_add' := ⋯ }
Instances For
instance
SeparationQuotient.instDistribSMul
{M : Type u_1}
{A : Type u_2}
[TopologicalSpace A]
[AddZeroClass A]
[DistribSMul M A]
[ContinuousAdd A]
[ContinuousConstSMul M A]
:
Equations
- SeparationQuotient.instDistribSMul = Function.Surjective.distribSMul SeparationQuotient.mkAddMonoidHom ⋯ ⋯
instance
SeparationQuotient.instDistribMulAction
{M : Type u_1}
{A : Type u_2}
[TopologicalSpace A]
[Monoid M]
[AddMonoid A]
[DistribMulAction M A]
[ContinuousAdd A]
[ContinuousConstSMul M A]
:
Equations
- SeparationQuotient.instDistribMulAction = Function.Surjective.distribMulAction SeparationQuotient.mkAddMonoidHom ⋯ ⋯
instance
SeparationQuotient.instMulDistribMulAction
{M : Type u_1}
{A : Type u_2}
[TopologicalSpace A]
[Monoid M]
[Monoid A]
[MulDistribMulAction M A]
[ContinuousMul A]
[ContinuousConstSMul M A]
:
Equations
- SeparationQuotient.instMulDistribMulAction = Function.Surjective.mulDistribMulAction SeparationQuotient.mkMonoidHom ⋯ ⋯
instance
SeparationQuotient.instModule
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
[TopologicalSpace M]
[ContinuousAdd M]
[ContinuousConstSMul R M]
:
Module R (SeparationQuotient M)
Equations
- SeparationQuotient.instModule = Function.Surjective.module R SeparationQuotient.mkAddMonoidHom ⋯ ⋯
@[simp]
theorem
SeparationQuotient.mkCLM_apply
(R : Type u_1)
(M : Type u_2)
[Semiring R]
[AddCommMonoid M]
[Module R M]
[TopologicalSpace M]
[ContinuousAdd M]
[ContinuousConstSMul R M]
:
∀ (a : M), (SeparationQuotient.mkCLM R M) a = SeparationQuotient.mk a
@[simp]
theorem
SeparationQuotient.mkCLM_toFun
(R : Type u_1)
(M : Type u_2)
[Semiring R]
[AddCommMonoid M]
[Module R M]
[TopologicalSpace M]
[ContinuousAdd M]
[ContinuousConstSMul R M]
:
∀ (a : M), (SeparationQuotient.mkCLM R M) a = SeparationQuotient.mk a
def
SeparationQuotient.mkCLM
(R : Type u_1)
(M : Type u_2)
[Semiring R]
[AddCommMonoid M]
[Module R M]
[TopologicalSpace M]
[ContinuousAdd M]
[ContinuousConstSMul R M]
:
M →L[R] SeparationQuotient M
SeparationQuotient.mk
as a continuous linear map.
Equations
- SeparationQuotient.mkCLM R M = { toFun := SeparationQuotient.mk, map_add' := ⋯, map_smul' := ⋯, cont := ⋯ }
Instances For
instance
SeparationQuotient.instAlgebra
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Algebra R A]
[TopologicalSpace A]
[TopologicalSemiring A]
[ContinuousConstSMul R A]
:
Algebra R (SeparationQuotient A)
Equations
- SeparationQuotient.instAlgebra = Algebra.mk (SeparationQuotient.mkRingHom.comp (algebraMap R A)) ⋯ ⋯
@[simp]
theorem
SeparationQuotient.mk_algebraMap
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Algebra R A]
[TopologicalSpace A]
[TopologicalSemiring A]
[ContinuousConstSMul R A]
(r : R)
:
SeparationQuotient.mk ((algebraMap R A) r) = (algebraMap R (SeparationQuotient A)) r