HepLean Documentation

Mathlib.Data.Matrix.ConjTranspose

Matrices over star rings. #

Notation #

The locale Matrix gives the following notation:

def Matrix.conjTranspose {m : Type u_2} {n : Type u_3} {α : Type v} [Star α] (M : Matrix m n α) :
Matrix n m α

The conjugate transpose of a matrix defined in term of star.

Equations
  • M.conjTranspose = M.transpose.map star
Instances For

    The conjugate transpose of a matrix defined in term of star.

    Equations
    Instances For
      @[simp]
      theorem Matrix.diagonal_conjTranspose {n : Type u_3} {α : Type v} [DecidableEq n] [AddMonoid α] [StarAddMonoid α] (v : nα) :
      (Matrix.diagonal v).conjTranspose = Matrix.diagonal (star v)
      @[simp]
      theorem Matrix.diag_conjTranspose {n : Type u_3} {α : Type v} [AddMonoid α] [StarAddMonoid α] (A : Matrix n n α) :
      A.conjTranspose.diag = star A.diag
      theorem Matrix.star_dotProduct_star {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalSemiring α] [StarRing α] (v w : mα) :
      theorem Matrix.star_dotProduct {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalSemiring α] [StarRing α] (v w : mα) :
      theorem Matrix.dotProduct_star {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalSemiring α] [StarRing α] (v w : mα) :
      theorem Matrix.star_mulVec {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalSemiring α] [Fintype n] [StarRing α] (M : Matrix m n α) (v : nα) :
      star (M.mulVec v) = Matrix.vecMul (star v) M.conjTranspose
      theorem Matrix.star_vecMul {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalSemiring α] [Fintype m] [StarRing α] (M : Matrix m n α) (v : mα) :
      star (Matrix.vecMul v M) = M.conjTranspose.mulVec (star v)
      theorem Matrix.mulVec_conjTranspose {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalSemiring α] [Fintype m] [StarRing α] (A : Matrix m n α) (x : mα) :
      A.conjTranspose.mulVec x = star (Matrix.vecMul (star x) A)
      theorem Matrix.vecMul_conjTranspose {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalSemiring α] [Fintype n] [StarRing α] (A : Matrix m n α) (x : nα) :
      Matrix.vecMul x A.conjTranspose = star (A.mulVec (star x))
      @[simp]
      theorem Matrix.conjTranspose_apply {m : Type u_2} {n : Type u_3} {α : Type v} [Star α] (M : Matrix m n α) (i : m) (j : n) :
      M.conjTranspose j i = star (M i j)

      Tell simp what the entries are in a conjugate transposed matrix.

      Compare with mul_apply, diagonal_apply_eq, etc.

      @[simp]
      theorem Matrix.conjTranspose_conjTranspose {m : Type u_2} {n : Type u_3} {α : Type v} [InvolutiveStar α] (M : Matrix m n α) :
      M.conjTranspose.conjTranspose = M
      theorem Matrix.conjTranspose_injective {m : Type u_2} {n : Type u_3} {α : Type v} [InvolutiveStar α] :
      Function.Injective Matrix.conjTranspose
      @[simp]
      theorem Matrix.conjTranspose_inj {m : Type u_2} {n : Type u_3} {α : Type v} [InvolutiveStar α] {A B : Matrix m n α} :
      A.conjTranspose = B.conjTranspose A = B
      @[simp]
      theorem Matrix.conjTranspose_eq_diagonal {n : Type u_3} {α : Type v} [DecidableEq n] [AddMonoid α] [StarAddMonoid α] {M : Matrix n n α} {v : nα} :
      M.conjTranspose = Matrix.diagonal v M = Matrix.diagonal (star v)
      @[simp]
      theorem Matrix.conjTranspose_zero {m : Type u_2} {n : Type u_3} {α : Type v} [AddMonoid α] [StarAddMonoid α] :
      @[simp]
      theorem Matrix.conjTranspose_eq_zero {m : Type u_2} {n : Type u_3} {α : Type v} [AddMonoid α] [StarAddMonoid α] {M : Matrix m n α} :
      M.conjTranspose = 0 M = 0
      @[simp]
      @[simp]
      theorem Matrix.conjTranspose_eq_one {n : Type u_3} {α : Type v} [DecidableEq n] [Semiring α] [StarRing α] {M : Matrix n n α} :
      M.conjTranspose = 1 M = 1
      @[simp]
      theorem Matrix.conjTranspose_natCast {n : Type u_3} {α : Type v} [DecidableEq n] [Semiring α] [StarRing α] (d : ) :
      (↑d).conjTranspose = d
      @[simp]
      theorem Matrix.conjTranspose_eq_natCast {n : Type u_3} {α : Type v} [DecidableEq n] [Semiring α] [StarRing α] {M : Matrix n n α} {d : } :
      M.conjTranspose = d M = d
      @[simp]
      theorem Matrix.conjTranspose_ofNat {n : Type u_3} {α : Type v} [DecidableEq n] [Semiring α] [StarRing α] (d : ) [d.AtLeastTwo] :
      (OfNat.ofNat d).conjTranspose = OfNat.ofNat d
      @[simp]
      theorem Matrix.conjTranspose_eq_ofNat {n : Type u_3} {α : Type v} [DecidableEq n] [Semiring α] [StarRing α] {M : Matrix n n α} {d : } [d.AtLeastTwo] :
      M.conjTranspose = OfNat.ofNat d M = OfNat.ofNat d
      @[simp]
      theorem Matrix.conjTranspose_intCast {n : Type u_3} {α : Type v} [DecidableEq n] [Ring α] [StarRing α] (d : ) :
      (↑d).conjTranspose = d
      @[simp]
      theorem Matrix.conjTranspose_eq_intCast {n : Type u_3} {α : Type v} [DecidableEq n] [Ring α] [StarRing α] {M : Matrix n n α} {d : } :
      M.conjTranspose = d M = d
      @[simp]
      theorem Matrix.conjTranspose_add {m : Type u_2} {n : Type u_3} {α : Type v} [AddMonoid α] [StarAddMonoid α] (M N : Matrix m n α) :
      (M + N).conjTranspose = M.conjTranspose + N.conjTranspose
      @[simp]
      theorem Matrix.conjTranspose_sub {m : Type u_2} {n : Type u_3} {α : Type v} [AddGroup α] [StarAddMonoid α] (M N : Matrix m n α) :
      (M - N).conjTranspose = M.conjTranspose - N.conjTranspose
      @[simp]
      theorem Matrix.conjTranspose_smul {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} [Star R] [Star α] [SMul R α] [StarModule R α] (c : R) (M : Matrix m n α) :
      (c M).conjTranspose = star c M.conjTranspose

      Note that StarModule is quite a strong requirement; as such we also provide the following variants which this lemma would not apply to:

      @[simp]
      theorem Matrix.conjTranspose_smul_non_comm {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} [Star R] [Star α] [SMul R α] [SMul Rᵐᵒᵖ α] (c : R) (M : Matrix m n α) (h : ∀ (r : R) (a : α), star (r a) = MulOpposite.op (star r) star a) :
      (c M).conjTranspose = MulOpposite.op (star c) M.conjTranspose
      theorem Matrix.conjTranspose_smul_self {m : Type u_2} {n : Type u_3} {α : Type v} [Mul α] [StarMul α] (c : α) (M : Matrix m n α) :
      (c M).conjTranspose = MulOpposite.op (star c) M.conjTranspose
      @[simp]
      theorem Matrix.conjTranspose_nsmul {m : Type u_2} {n : Type u_3} {α : Type v} [AddMonoid α] [StarAddMonoid α] (c : ) (M : Matrix m n α) :
      (c M).conjTranspose = c M.conjTranspose
      @[simp]
      theorem Matrix.conjTranspose_zsmul {m : Type u_2} {n : Type u_3} {α : Type v} [AddGroup α] [StarAddMonoid α] (c : ) (M : Matrix m n α) :
      (c M).conjTranspose = c M.conjTranspose
      @[simp]
      theorem Matrix.conjTranspose_natCast_smul {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} [Semiring R] [AddCommMonoid α] [StarAddMonoid α] [Module R α] (c : ) (M : Matrix m n α) :
      (c M).conjTranspose = c M.conjTranspose
      @[simp]
      theorem Matrix.conjTranspose_ofNat_smul {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} [Semiring R] [AddCommMonoid α] [StarAddMonoid α] [Module R α] (c : ) [c.AtLeastTwo] (M : Matrix m n α) :
      (OfNat.ofNat c M).conjTranspose = OfNat.ofNat c M.conjTranspose
      @[simp]
      theorem Matrix.conjTranspose_intCast_smul {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} [Ring R] [AddCommGroup α] [StarAddMonoid α] [Module R α] (c : ) (M : Matrix m n α) :
      (c M).conjTranspose = c M.conjTranspose
      @[simp]
      theorem Matrix.conjTranspose_inv_natCast_smul {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} [DivisionSemiring R] [AddCommMonoid α] [StarAddMonoid α] [Module R α] (c : ) (M : Matrix m n α) :
      ((↑c)⁻¹ M).conjTranspose = (↑c)⁻¹ M.conjTranspose
      @[simp]
      theorem Matrix.conjTranspose_inv_ofNat_smul {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} [DivisionSemiring R] [AddCommMonoid α] [StarAddMonoid α] [Module R α] (c : ) [c.AtLeastTwo] (M : Matrix m n α) :
      ((OfNat.ofNat c)⁻¹ M).conjTranspose = (OfNat.ofNat c)⁻¹ M.conjTranspose
      @[simp]
      theorem Matrix.conjTranspose_inv_intCast_smul {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} [DivisionRing R] [AddCommGroup α] [StarAddMonoid α] [Module R α] (c : ) (M : Matrix m n α) :
      ((↑c)⁻¹ M).conjTranspose = (↑c)⁻¹ M.conjTranspose
      @[simp]
      theorem Matrix.conjTranspose_ratCast_smul {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} [DivisionRing R] [AddCommGroup α] [StarAddMonoid α] [Module R α] (c : ) (M : Matrix m n α) :
      (c M).conjTranspose = c M.conjTranspose
      theorem Matrix.conjTranspose_rat_smul {m : Type u_2} {n : Type u_3} {α : Type v} [AddCommGroup α] [StarAddMonoid α] [Module α] (c : ) (M : Matrix m n α) :
      (c M).conjTranspose = c M.conjTranspose
      @[simp]
      theorem Matrix.conjTranspose_mul {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type v} [Fintype n] [NonUnitalSemiring α] [StarRing α] (M : Matrix m n α) (N : Matrix n l α) :
      (M * N).conjTranspose = N.conjTranspose * M.conjTranspose
      @[simp]
      theorem Matrix.conjTranspose_neg {m : Type u_2} {n : Type u_3} {α : Type v} [AddGroup α] [StarAddMonoid α] (M : Matrix m n α) :
      (-M).conjTranspose = -M.conjTranspose
      theorem Matrix.conjTranspose_map {m : Type u_2} {n : Type u_3} {α : Type v} {β : Type w} [Star α] [Star β] {A : Matrix m n α} (f : αβ) (hf : Function.Semiconj f star star) :
      A.conjTranspose.map f = (A.map f).conjTranspose
      @[simp]
      theorem Matrix.conjTranspose_eq_transpose_of_trivial {m : Type u_2} {n : Type u_3} {α : Type v} [Star α] [TrivialStar α] (A : Matrix m n α) :
      A.conjTranspose = A.transpose

      When star x = x on the coefficients (such as the real numbers) conjTranspose and transpose are the same operation.

      def Matrix.conjTransposeAddEquiv (m : Type u_2) (n : Type u_3) (α : Type v) [AddMonoid α] [StarAddMonoid α] :
      Matrix m n α ≃+ Matrix n m α

      Matrix.conjTranspose as an AddEquiv

      Equations
      • Matrix.conjTransposeAddEquiv m n α = { toFun := Matrix.conjTranspose, invFun := Matrix.conjTranspose, left_inv := , right_inv := , map_add' := }
      Instances For
        @[simp]
        theorem Matrix.conjTransposeAddEquiv_apply (m : Type u_2) (n : Type u_3) (α : Type v) [AddMonoid α] [StarAddMonoid α] (M : Matrix m n α) :
        (Matrix.conjTransposeAddEquiv m n α) M = M.conjTranspose
        theorem Matrix.conjTranspose_list_sum {m : Type u_2} {n : Type u_3} {α : Type v} [AddMonoid α] [StarAddMonoid α] (l : List (Matrix m n α)) :
        l.sum.conjTranspose = (List.map Matrix.conjTranspose l).sum
        theorem Matrix.conjTranspose_multiset_sum {m : Type u_2} {n : Type u_3} {α : Type v} [AddCommMonoid α] [StarAddMonoid α] (s : Multiset (Matrix m n α)) :
        s.sum.conjTranspose = (Multiset.map Matrix.conjTranspose s).sum
        theorem Matrix.conjTranspose_sum {m : Type u_2} {n : Type u_3} {α : Type v} [AddCommMonoid α] [StarAddMonoid α] {ι : Type u_10} (s : Finset ι) (M : ιMatrix m n α) :
        (∑ is, M i).conjTranspose = is, (M i).conjTranspose
        def Matrix.conjTransposeLinearEquiv (m : Type u_2) (n : Type u_3) (R : Type u_7) (α : Type v) [CommSemiring R] [StarRing R] [AddCommMonoid α] [StarAddMonoid α] [Module R α] [StarModule R α] :
        Matrix m n α ≃ₗ⋆[R] Matrix n m α

        Matrix.conjTranspose as a LinearMap

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem Matrix.conjTransposeLinearEquiv_apply (m : Type u_2) (n : Type u_3) (R : Type u_7) (α : Type v) [CommSemiring R] [StarRing R] [AddCommMonoid α] [StarAddMonoid α] [Module R α] [StarModule R α] (a✝ : Matrix m n α) :
          @[simp]
          theorem Matrix.conjTransposeLinearEquiv_symm (m : Type u_2) (n : Type u_3) (R : Type u_7) (α : Type v) [CommSemiring R] [StarRing R] [AddCommMonoid α] [StarAddMonoid α] [Module R α] [StarModule R α] :
          def Matrix.conjTransposeRingEquiv (m : Type u_2) (α : Type v) [Semiring α] [StarRing α] [Fintype m] :
          Matrix m m α ≃+* (Matrix m m α)ᵐᵒᵖ

          Matrix.conjTranspose as a RingEquiv to the opposite ring

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem Matrix.conjTransposeRingEquiv_symm_apply (m : Type u_2) (α : Type v) [Semiring α] [StarRing α] [Fintype m] (M : (Matrix m m α)ᵐᵒᵖ) :
            (Matrix.conjTransposeRingEquiv m α).symm M = (MulOpposite.unop M).conjTranspose
            @[simp]
            theorem Matrix.conjTransposeRingEquiv_apply (m : Type u_2) (α : Type v) [Semiring α] [StarRing α] [Fintype m] (M : Matrix m m α) :
            @[simp]
            theorem Matrix.conjTranspose_pow {m : Type u_2} {α : Type v} [Semiring α] [StarRing α] [Fintype m] [DecidableEq m] (M : Matrix m m α) (k : ) :
            (M ^ k).conjTranspose = M.conjTranspose ^ k
            theorem Matrix.conjTranspose_list_prod {m : Type u_2} {α : Type v} [Semiring α] [StarRing α] [Fintype m] [DecidableEq m] (l : List (Matrix m m α)) :
            l.prod.conjTranspose = (List.map Matrix.conjTranspose l).reverse.prod
            instance Matrix.instStar {n : Type u_3} {α : Type v} [Star α] :
            Star (Matrix n n α)

            When α has a star operation, square matrices Matrix n n α have a star operation equal to Matrix.conjTranspose.

            Equations
            • Matrix.instStar = { star := Matrix.conjTranspose }
            theorem Matrix.star_eq_conjTranspose {m : Type u_2} {α : Type v} [Star α] (M : Matrix m m α) :
            star M = M.conjTranspose
            @[simp]
            theorem Matrix.star_apply {n : Type u_3} {α : Type v} [Star α] (M : Matrix n n α) (i j : n) :
            star M i j = star (M j i)
            instance Matrix.instInvolutiveStar {n : Type u_3} {α : Type v} [InvolutiveStar α] :
            Equations
            instance Matrix.instStarAddMonoid {n : Type u_3} {α : Type v} [AddMonoid α] [StarAddMonoid α] :

            When α is a *-additive monoid, Matrix.star is also a *-additive monoid.

            Equations
            instance Matrix.instStarModule {n : Type u_3} {α : Type v} {β : Type w} [Star α] [Star β] [SMul α β] [StarModule α β] :
            StarModule α (Matrix n n β)
            Equations
            • =
            instance Matrix.instStarRing {n : Type u_3} {α : Type v} [Fintype n] [NonUnitalSemiring α] [StarRing α] :
            StarRing (Matrix n n α)

            When α is a *-(semi)ring, Matrix.star is also a *-(semi)ring.

            Equations
            theorem Matrix.star_mul {n : Type u_3} {α : Type v} [Fintype n] [NonUnitalSemiring α] [StarRing α] (M N : Matrix n n α) :
            star (M * N) = star N * star M

            A version of star_mul for * instead of *.

            @[simp]
            theorem Matrix.conjTranspose_submatrix {l : Type u_1} {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [Star α] (A : Matrix m n α) (r_reindex : lm) (c_reindex : on) :
            (A.submatrix r_reindex c_reindex).conjTranspose = A.conjTranspose.submatrix c_reindex r_reindex
            theorem Matrix.conjTranspose_reindex {l : Type u_1} {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [Star α] (eₘ : m l) (eₙ : n o) (M : Matrix m n α) :
            ((Matrix.reindex eₘ eₙ) M).conjTranspose = (Matrix.reindex eₙ eₘ) M.conjTranspose