HepLean Documentation

Mathlib.Data.Matrix.Mul

Matrix multiplication #

This file defines matrix multiplication

Main definitions #

Notation #

The locale Matrix gives the following notation:

See Mathlib/Data/Matrix/ConjTranspose.lean for

Implementation notes #

For convenience, Matrix m n α is defined as m → n → α, as this allows elements of the matrix to be accessed with A i j. However, it is not advisable to construct matrices using terms of the form fun i j ↦ _ or even (fun i j ↦ _ : Matrix m n α), as these are not recognized by Lean as having the right type. Instead, Matrix.of should be used.

TODO #

Under various conditions, multiplication of infinite matrices makes sense. These have not yet been implemented.

def Matrix.dotProduct {m : Type u_2} {α : Type v} [Fintype m] [Mul α] [AddCommMonoid α] (v w : mα) :
α

dotProduct v w is the sum of the entrywise products v i * w i

Equations
Instances For

    dotProduct v w is the sum of the entrywise products v i * w i

    Equations
    Instances For
      theorem Matrix.dotProduct_assoc {m : Type u_2} {n : Type u_3} {α : Type v} [Fintype m] [Fintype n] [NonUnitalSemiring α] (u : mα) (w : nα) (v : Matrix m n α) :
      Matrix.dotProduct (fun (j : n) => Matrix.dotProduct u fun (i : m) => v i j) w = Matrix.dotProduct u fun (i : m) => Matrix.dotProduct (v i) w
      theorem Matrix.dotProduct_comm {m : Type u_2} {α : Type v} [Fintype m] [AddCommMonoid α] [CommSemigroup α] (v w : mα) :
      theorem Matrix.dotProduct_one {n : Type u_3} {α : Type v} [Fintype n] [MulOneClass α] [AddCommMonoid α] (v : nα) :
      Matrix.dotProduct v 1 = i : n, v i
      theorem Matrix.one_dotProduct {n : Type u_3} {α : Type v} [Fintype n] [MulOneClass α] [AddCommMonoid α] (v : nα) :
      Matrix.dotProduct 1 v = i : n, v i
      @[simp]
      theorem Matrix.dotProduct_zero {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocSemiring α] (v : mα) :
      @[simp]
      theorem Matrix.dotProduct_zero' {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocSemiring α] (v : mα) :
      (Matrix.dotProduct v fun (x : m) => 0) = 0
      @[simp]
      theorem Matrix.zero_dotProduct {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocSemiring α] (v : mα) :
      @[simp]
      theorem Matrix.zero_dotProduct' {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocSemiring α] (v : mα) :
      Matrix.dotProduct (fun (x : m) => 0) v = 0
      @[simp]
      theorem Matrix.add_dotProduct {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocSemiring α] (u v w : mα) :
      @[simp]
      theorem Matrix.dotProduct_add {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocSemiring α] (u v w : mα) :
      @[simp]
      theorem Matrix.sum_elim_dotProduct_sum_elim {m : Type u_2} {n : Type u_3} {α : Type v} [Fintype m] [Fintype n] [NonUnitalNonAssocSemiring α] (u v : mα) (x y : nα) :
      @[simp]
      theorem Matrix.comp_equiv_symm_dotProduct {m : Type u_2} {n : Type u_3} {α : Type v} [Fintype m] [Fintype n] [NonUnitalNonAssocSemiring α] (u : mα) (x : nα) (e : m n) :
      Matrix.dotProduct (u e.symm) x = Matrix.dotProduct u (x e)

      Permuting a vector on the left of a dot product can be transferred to the right.

      @[simp]
      theorem Matrix.dotProduct_comp_equiv_symm {m : Type u_2} {n : Type u_3} {α : Type v} [Fintype m] [Fintype n] [NonUnitalNonAssocSemiring α] (u : mα) (x : nα) (e : n m) :
      Matrix.dotProduct u (x e.symm) = Matrix.dotProduct (u e) x

      Permuting a vector on the right of a dot product can be transferred to the left.

      @[simp]
      theorem Matrix.comp_equiv_dotProduct_comp_equiv {m : Type u_2} {n : Type u_3} {α : Type v} [Fintype m] [Fintype n] [NonUnitalNonAssocSemiring α] (x y : nα) (e : m n) :

      Permuting vectors on both sides of a dot product is a no-op.

      @[simp]
      theorem Matrix.diagonal_dotProduct {m : Type u_2} {α : Type v} [Fintype m] [DecidableEq m] [NonUnitalNonAssocSemiring α] (v w : mα) (i : m) :
      @[simp]
      theorem Matrix.dotProduct_diagonal {m : Type u_2} {α : Type v} [Fintype m] [DecidableEq m] [NonUnitalNonAssocSemiring α] (v w : mα) (i : m) :
      @[simp]
      theorem Matrix.dotProduct_diagonal' {m : Type u_2} {α : Type v} [Fintype m] [DecidableEq m] [NonUnitalNonAssocSemiring α] (v w : mα) (i : m) :
      (Matrix.dotProduct v fun (j : m) => Matrix.diagonal w j i) = v i * w i
      @[simp]
      theorem Matrix.single_dotProduct {m : Type u_2} {α : Type v} [Fintype m] [DecidableEq m] [NonUnitalNonAssocSemiring α] (v : mα) (x : α) (i : m) :
      @[simp]
      theorem Matrix.dotProduct_single {m : Type u_2} {α : Type v} [Fintype m] [DecidableEq m] [NonUnitalNonAssocSemiring α] (v : mα) (x : α) (i : m) :
      @[simp]
      theorem Matrix.dotProduct_single_one {n : Type u_3} {α : Type v} [Fintype n] [NonAssocSemiring α] [DecidableEq n] (v : nα) (i : n) :
      theorem Matrix.single_one_dotProduct {n : Type u_3} {α : Type v} [Fintype n] [NonAssocSemiring α] [DecidableEq n] (i : n) (v : nα) :
      @[simp]
      theorem Matrix.neg_dotProduct {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocRing α] (v w : mα) :
      @[simp]
      theorem Matrix.dotProduct_neg {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocRing α] (v w : mα) :
      theorem Matrix.neg_dotProduct_neg {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocRing α] (v w : mα) :
      @[simp]
      theorem Matrix.sub_dotProduct {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocRing α] (u v w : mα) :
      @[simp]
      theorem Matrix.dotProduct_sub {m : Type u_2} {α : Type v} [Fintype m] [NonUnitalNonAssocRing α] (u v w : mα) :
      @[simp]
      theorem Matrix.smul_dotProduct {m : Type u_2} {R : Type u_7} {α : Type v} [Fintype m] [Monoid R] [Mul α] [AddCommMonoid α] [DistribMulAction R α] [IsScalarTower R α α] (x : R) (v w : mα) :
      @[simp]
      theorem Matrix.dotProduct_smul {m : Type u_2} {R : Type u_7} {α : Type v} [Fintype m] [Monoid R] [Mul α] [AddCommMonoid α] [DistribMulAction R α] [SMulCommClass R α α] (x : R) (v w : mα) :
      @[defaultInstance 100]
      instance Matrix.instHMulOfFintypeOfMulOfAddCommMonoid {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type v} [Fintype m] [Mul α] [AddCommMonoid α] :
      HMul (Matrix l m α) (Matrix m n α) (Matrix l n α)

      M * N is the usual product of matrices M and N, i.e. we have that (M * N) i k is the dot product of the i-th row of M by the k-th column of N. This is currently only defined when m is finite.

      Equations
      • Matrix.instHMulOfFintypeOfMulOfAddCommMonoid = { hMul := fun (M : Matrix l m α) (N : Matrix m n α) (i : l) (k : n) => Matrix.dotProduct (fun (j : m) => M i j) fun (j : m) => N j k }
      theorem Matrix.mul_apply {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type v} [Fintype m] [Mul α] [AddCommMonoid α] {M : Matrix l m α} {N : Matrix m n α} {i : l} {k : n} :
      (M * N) i k = j : m, M i j * N j k
      instance Matrix.instMulOfFintypeOfAddCommMonoid {n : Type u_3} {α : Type v} [Fintype n] [Mul α] [AddCommMonoid α] :
      Mul (Matrix n n α)
      Equations
      • Matrix.instMulOfFintypeOfAddCommMonoid = { mul := fun (M N : Matrix n n α) => M * N }
      theorem Matrix.mul_apply' {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type v} [Fintype m] [Mul α] [AddCommMonoid α] {M : Matrix l m α} {N : Matrix m n α} {i : l} {k : n} :
      (M * N) i k = Matrix.dotProduct (fun (j : m) => M i j) fun (j : m) => N j k
      theorem Matrix.two_mul_expl {R : Type u_10} [CommRing R] (A B : Matrix (Fin 2) (Fin 2) R) :
      (A * B) 0 0 = A 0 0 * B 0 0 + A 0 1 * B 1 0 (A * B) 0 1 = A 0 0 * B 0 1 + A 0 1 * B 1 1 (A * B) 1 0 = A 1 0 * B 0 0 + A 1 1 * B 1 0 (A * B) 1 1 = A 1 0 * B 0 1 + A 1 1 * B 1 1
      @[simp]
      theorem Matrix.smul_mul {l : Type u_1} {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} [AddCommMonoid α] [Mul α] [Fintype n] [Monoid R] [DistribMulAction R α] [IsScalarTower R α α] (a : R) (M : Matrix m n α) (N : Matrix n l α) :
      a M * N = a (M * N)
      @[simp]
      theorem Matrix.mul_smul {l : Type u_1} {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} [AddCommMonoid α] [Mul α] [Fintype n] [Monoid R] [DistribMulAction R α] [SMulCommClass R α α] (M : Matrix m n α) (a : R) (N : Matrix n l α) :
      M * a N = a (M * N)
      @[simp]
      theorem Matrix.mul_zero {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] (M : Matrix m n α) :
      M * 0 = 0
      @[simp]
      theorem Matrix.zero_mul {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] (M : Matrix m n α) :
      0 * M = 0
      theorem Matrix.mul_add {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] (L : Matrix m n α) (M N : Matrix n o α) :
      L * (M + N) = L * M + L * N
      theorem Matrix.add_mul {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] (L M : Matrix l m α) (N : Matrix m n α) :
      (L + M) * N = L * N + M * N
      Equations
      @[simp]
      theorem Matrix.diagonal_mul {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] [DecidableEq m] (d : mα) (M : Matrix m n α) (i : m) (j : n) :
      (Matrix.diagonal d * M) i j = d i * M i j
      @[simp]
      theorem Matrix.mul_diagonal {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] [DecidableEq n] (d : nα) (M : Matrix m n α) (i : m) (j : n) :
      (M * Matrix.diagonal d) i j = M i j * d j
      @[simp]
      theorem Matrix.diagonal_mul_diagonal {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] [DecidableEq n] (d₁ d₂ : nα) :
      Matrix.diagonal d₁ * Matrix.diagonal d₂ = Matrix.diagonal fun (i : n) => d₁ i * d₂ i
      theorem Matrix.diagonal_mul_diagonal' {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] [DecidableEq n] (d₁ d₂ : nα) :
      Matrix.diagonal d₁ * Matrix.diagonal d₂ = Matrix.diagonal fun (i : n) => d₁ i * d₂ i
      theorem Matrix.smul_eq_diagonal_mul {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] [DecidableEq m] (M : Matrix m n α) (a : α) :
      a M = (Matrix.diagonal fun (x : m) => a) * M
      theorem Matrix.op_smul_eq_mul_diagonal {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] [DecidableEq n] (M : Matrix m n α) (a : α) :
      MulOpposite.op a M = M * Matrix.diagonal fun (x : n) => a
      def Matrix.addMonoidHomMulLeft {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] (M : Matrix l m α) :
      Matrix m n α →+ Matrix l n α

      Left multiplication by a matrix, as an AddMonoidHom from matrices to matrices.

      Equations
      • M.addMonoidHomMulLeft = { toFun := fun (x : Matrix m n α) => M * x, map_zero' := , map_add' := }
      Instances For
        @[simp]
        theorem Matrix.addMonoidHomMulLeft_apply {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] (M : Matrix l m α) (x : Matrix m n α) :
        M.addMonoidHomMulLeft x = M * x
        def Matrix.addMonoidHomMulRight {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] (M : Matrix m n α) :
        Matrix l m α →+ Matrix l n α

        Right multiplication by a matrix, as an AddMonoidHom from matrices to matrices.

        Equations
        • M.addMonoidHomMulRight = { toFun := fun (x : Matrix l m α) => x * M, map_zero' := , map_add' := }
        Instances For
          @[simp]
          theorem Matrix.addMonoidHomMulRight_apply {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] (M : Matrix m n α) (x : Matrix l m α) :
          M.addMonoidHomMulRight x = x * M
          theorem Matrix.sum_mul {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type v} {β : Type w} [NonUnitalNonAssocSemiring α] [Fintype m] (s : Finset β) (f : βMatrix l m α) (M : Matrix m n α) :
          (∑ as, f a) * M = as, f a * M
          theorem Matrix.mul_sum {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type v} {β : Type w} [NonUnitalNonAssocSemiring α] [Fintype m] (s : Finset β) (f : βMatrix m n α) (M : Matrix l m α) :
          M * as, f a = as, M * f a
          instance Matrix.Semiring.isScalarTower {n : Type u_3} {R : Type u_7} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] [Monoid R] [DistribMulAction R α] [IsScalarTower R α α] :
          IsScalarTower R (Matrix n n α) (Matrix n n α)

          This instance enables use with smul_mul_assoc.

          Equations
          • =
          instance Matrix.Semiring.smulCommClass {n : Type u_3} {R : Type u_7} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] [Monoid R] [DistribMulAction R α] [SMulCommClass R α α] :
          SMulCommClass R (Matrix n n α) (Matrix n n α)

          This instance enables use with mul_smul_comm.

          Equations
          • =
          @[simp]
          theorem Matrix.one_mul {m : Type u_2} {n : Type u_3} {α : Type v} [NonAssocSemiring α] [Fintype m] [DecidableEq m] (M : Matrix m n α) :
          1 * M = M
          @[simp]
          theorem Matrix.mul_one {m : Type u_2} {n : Type u_3} {α : Type v} [NonAssocSemiring α] [Fintype n] [DecidableEq n] (M : Matrix m n α) :
          M * 1 = M
          instance Matrix.nonAssocSemiring {n : Type u_3} {α : Type v} [NonAssocSemiring α] [Fintype n] [DecidableEq n] :
          Equations
          @[simp]
          theorem Matrix.map_mul {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} {β : Type w} [NonAssocSemiring α] [Fintype n] {L : Matrix m n α} {M : Matrix n o α} [NonAssocSemiring β] {f : α →+* β} :
          (L * M).map f = L.map f * M.map f
          theorem Matrix.smul_one_eq_diagonal {m : Type u_2} {α : Type v} [NonAssocSemiring α] [DecidableEq m] (a : α) :
          a 1 = Matrix.diagonal fun (x : m) => a
          theorem Matrix.op_smul_one_eq_diagonal {m : Type u_2} {α : Type v} [NonAssocSemiring α] [DecidableEq m] (a : α) :
          MulOpposite.op a 1 = Matrix.diagonal fun (x : m) => a
          theorem Matrix.mul_assoc {l : Type u_1} {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [NonUnitalSemiring α] [Fintype m] [Fintype n] (L : Matrix l m α) (M : Matrix m n α) (N : Matrix n o α) :
          L * M * N = L * (M * N)
          instance Matrix.nonUnitalSemiring {n : Type u_3} {α : Type v} [NonUnitalSemiring α] [Fintype n] :
          Equations
          instance Matrix.semiring {n : Type u_3} {α : Type v} [Semiring α] [Fintype n] [DecidableEq n] :
          Semiring (Matrix n n α)
          Equations
          • Matrix.semiring = Semiring.mk npowRecAuto
          @[simp]
          theorem Matrix.neg_mul {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [NonUnitalNonAssocRing α] [Fintype n] (M : Matrix m n α) (N : Matrix n o α) :
          -M * N = -(M * N)
          @[simp]
          theorem Matrix.mul_neg {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [NonUnitalNonAssocRing α] [Fintype n] (M : Matrix m n α) (N : Matrix n o α) :
          M * -N = -(M * N)
          theorem Matrix.sub_mul {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [NonUnitalNonAssocRing α] [Fintype n] (M M' : Matrix m n α) (N : Matrix n o α) :
          (M - M') * N = M * N - M' * N
          theorem Matrix.mul_sub {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [NonUnitalNonAssocRing α] [Fintype n] (M : Matrix m n α) (N N' : Matrix n o α) :
          M * (N - N') = M * N - M * N'
          Equations
          instance Matrix.instNonUnitalRing {n : Type u_3} {α : Type v} [Fintype n] [NonUnitalRing α] :
          Equations
          instance Matrix.instNonAssocRing {n : Type u_3} {α : Type v} [Fintype n] [DecidableEq n] [NonAssocRing α] :
          Equations
          instance Matrix.instRing {n : Type u_3} {α : Type v} [Fintype n] [DecidableEq n] [Ring α] :
          Ring (Matrix n n α)
          Equations
          • Matrix.instRing = Ring.mk SubNegMonoid.zsmul
          @[simp]
          theorem Matrix.mul_mul_left {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [Semiring α] [Fintype n] (M : Matrix m n α) (N : Matrix n o α) (a : α) :
          (Matrix.of fun (i : m) (j : n) => a * M i j) * N = a (M * N)
          theorem Matrix.smul_eq_mul_diagonal {m : Type u_2} {n : Type u_3} {α : Type v} [CommSemiring α] [Fintype n] [DecidableEq n] (M : Matrix m n α) (a : α) :
          a M = M * Matrix.diagonal fun (x : n) => a
          @[simp]
          theorem Matrix.mul_mul_right {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [CommSemiring α] [Fintype n] (M : Matrix m n α) (N : Matrix n o α) (a : α) :
          (M * Matrix.of fun (i : n) (j : o) => a * N i j) = a (M * N)
          def Matrix.vecMulVec {m : Type u_2} {n : Type u_3} {α : Type v} [Mul α] (w : mα) (v : nα) :
          Matrix m n α

          For two vectors w and v, vecMulVec w v i j is defined to be w i * v j. Put another way, vecMulVec w v is exactly col w * row v.

          Equations
          Instances For
            theorem Matrix.vecMulVec_apply {m : Type u_2} {n : Type u_3} {α : Type v} [Mul α] (w : mα) (v : nα) (i : m) (j : n) :
            Matrix.vecMulVec w v i j = w i * v j
            def Matrix.mulVec {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] (M : Matrix m n α) (v : nα) :
            mα

            M *ᵥ v (notation for mulVec M v) is the matrix-vector product of matrix M and vector v, where v is seen as a column vector. Put another way, M *ᵥ v is the vector whose entries are those of M * col v (see col_mulVec).

            The notation has precedence 73, which comes immediately before ⬝ᵥ for Matrix.dotProduct, so that A *ᵥ v ⬝ᵥ B *ᵥ w is parsed as (A *ᵥ v) ⬝ᵥ (B *ᵥ w).

            Equations
            Instances For

              M *ᵥ v (notation for mulVec M v) is the matrix-vector product of matrix M and vector v, where v is seen as a column vector. Put another way, M *ᵥ v is the vector whose entries are those of M * col v (see col_mulVec).

              The notation has precedence 73, which comes immediately before ⬝ᵥ for Matrix.dotProduct, so that A *ᵥ v ⬝ᵥ B *ᵥ w is parsed as (A *ᵥ v) ⬝ᵥ (B *ᵥ w).

              Equations
              Instances For
                def Matrix.vecMul {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] (v : mα) (M : Matrix m n α) :
                nα

                v ᵥ* M (notation for vecMul v M) is the vector-matrix product of vector v and matrix M, where v is seen as a row vector. Put another way, v ᵥ* M is the vector whose entries are those of row v * M (see row_vecMul).

                The notation has precedence 73, which comes immediately before ⬝ᵥ for Matrix.dotProduct, so that v ᵥ* A ⬝ᵥ w ᵥ* B is parsed as (v ᵥ* A) ⬝ᵥ (w ᵥ* B).

                Equations
                Instances For

                  v ᵥ* M (notation for vecMul v M) is the vector-matrix product of vector v and matrix M, where v is seen as a row vector. Put another way, v ᵥ* M is the vector whose entries are those of row v * M (see row_vecMul).

                  The notation has precedence 73, which comes immediately before ⬝ᵥ for Matrix.dotProduct, so that v ᵥ* A ⬝ᵥ w ᵥ* B is parsed as (v ᵥ* A) ⬝ᵥ (w ᵥ* B).

                  Equations
                  Instances For
                    def Matrix.mulVec.addMonoidHomLeft {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] (v : nα) :
                    Matrix m n α →+ mα

                    Left multiplication by a matrix, as an AddMonoidHom from vectors to vectors.

                    Equations
                    Instances For
                      @[simp]
                      theorem Matrix.mulVec.addMonoidHomLeft_apply {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] (v : nα) (M : Matrix m n α) (a✝ : m) :
                      (Matrix.mulVec.addMonoidHomLeft v) M a✝ = M.mulVec v a✝
                      theorem Matrix.mul_apply_eq_vecMul {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] (A : Matrix m n α) (B : Matrix n o α) (i : m) :
                      (A * B) i = Matrix.vecMul (A i) B

                      The ith row of the multiplication is the same as the vecMul with the ith row of A.

                      theorem Matrix.mulVec_diagonal {m : Type u_2} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] [DecidableEq m] (v w : mα) (x : m) :
                      (Matrix.diagonal v).mulVec w x = v x * w x
                      theorem Matrix.vecMul_diagonal {m : Type u_2} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] [DecidableEq m] (v w : mα) (x : m) :
                      theorem Matrix.dotProduct_mulVec {m : Type u_2} {n : Type u_3} {R : Type u_7} [Fintype n] [Fintype m] [NonUnitalSemiring R] (v : mR) (A : Matrix m n R) (w : nR) :

                      Associate the dot product of mulVec to the left.

                      @[simp]
                      theorem Matrix.mulVec_zero {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] (A : Matrix m n α) :
                      A.mulVec 0 = 0
                      @[simp]
                      theorem Matrix.zero_vecMul {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] (A : Matrix m n α) :
                      @[simp]
                      theorem Matrix.zero_mulVec {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] (v : nα) :
                      @[simp]
                      theorem Matrix.vecMul_zero {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] (v : mα) :
                      theorem Matrix.smul_mulVec_assoc {m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] [Monoid R] [DistribMulAction R α] [IsScalarTower R α α] (a : R) (A : Matrix m n α) (b : nα) :
                      (a A).mulVec b = a A.mulVec b
                      theorem Matrix.mulVec_add {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] (A : Matrix m n α) (x y : nα) :
                      A.mulVec (x + y) = A.mulVec x + A.mulVec y
                      theorem Matrix.add_mulVec {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] (A B : Matrix m n α) (x : nα) :
                      (A + B).mulVec x = A.mulVec x + B.mulVec x
                      theorem Matrix.vecMul_add {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] (A B : Matrix m n α) (x : mα) :
                      theorem Matrix.add_vecMul {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype m] (A : Matrix m n α) (x y : mα) :
                      theorem Matrix.vecMul_smul {m : Type u_2} {n : Type u_3} {R : Type u_7} {S : Type u_8} [Fintype n] [Monoid R] [NonUnitalNonAssocSemiring S] [DistribMulAction R S] [IsScalarTower R S S] (M : Matrix n m S) (b : R) (v : nS) :
                      theorem Matrix.mulVec_smul {m : Type u_2} {n : Type u_3} {R : Type u_7} {S : Type u_8} [Fintype n] [Monoid R] [NonUnitalNonAssocSemiring S] [DistribMulAction R S] [SMulCommClass R S S] (M : Matrix m n S) (b : R) (v : nS) :
                      M.mulVec (b v) = b M.mulVec v
                      @[simp]
                      theorem Matrix.mulVec_single {m : Type u_2} {n : Type u_3} {R : Type u_7} [Fintype n] [DecidableEq n] [NonUnitalNonAssocSemiring R] (M : Matrix m n R) (j : n) (x : R) :
                      M.mulVec (Pi.single j x) = fun (i : m) => M i j * x
                      @[simp]
                      theorem Matrix.single_vecMul {m : Type u_2} {n : Type u_3} {R : Type u_7} [Fintype m] [DecidableEq m] [NonUnitalNonAssocSemiring R] (M : Matrix m n R) (i : m) (x : R) :
                      Matrix.vecMul (Pi.single i x) M = fun (j : n) => x * M i j
                      theorem Matrix.mulVec_single_one {m : Type u_2} {n : Type u_3} {R : Type u_7} [Fintype n] [DecidableEq n] [NonAssocSemiring R] (M : Matrix m n R) (j : n) :
                      M.mulVec (Pi.single j 1) = M.transpose j
                      theorem Matrix.single_one_vecMul {m : Type u_2} {n : Type u_3} {R : Type u_7} [Fintype m] [DecidableEq m] [NonAssocSemiring R] (i : m) (M : Matrix m n R) :
                      theorem Matrix.diagonal_mulVec_single {n : Type u_3} {R : Type u_7} [Fintype n] [DecidableEq n] [NonUnitalNonAssocSemiring R] (v : nR) (j : n) (x : R) :
                      (Matrix.diagonal v).mulVec (Pi.single j x) = Pi.single j (v j * x)
                      theorem Matrix.single_vecMul_diagonal {n : Type u_3} {R : Type u_7} [Fintype n] [DecidableEq n] [NonUnitalNonAssocSemiring R] (v : nR) (j : n) (x : R) :
                      @[simp]
                      theorem Matrix.vecMul_vecMul {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [NonUnitalSemiring α] [Fintype n] [Fintype m] (v : mα) (M : Matrix m n α) (N : Matrix n o α) :
                      @[simp]
                      theorem Matrix.mulVec_mulVec {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [NonUnitalSemiring α] [Fintype n] [Fintype o] (v : oα) (M : Matrix m n α) (N : Matrix n o α) :
                      M.mulVec (N.mulVec v) = (M * N).mulVec v
                      theorem Matrix.mul_mul_apply {n : Type u_3} {α : Type v} [NonUnitalSemiring α] [Fintype n] (A B C : Matrix n n α) (i j : n) :
                      (A * B * C) i j = Matrix.dotProduct (A i) (B.mulVec (C.transpose j))
                      theorem Matrix.mulVec_one {m : Type u_2} {n : Type u_3} {α : Type v} [NonAssocSemiring α] [Fintype n] (A : Matrix m n α) :
                      A.mulVec 1 = fun (i : m) => j : n, A i j
                      theorem Matrix.vec_one_mul {m : Type u_2} {n : Type u_3} {α : Type v} [NonAssocSemiring α] [Fintype m] (A : Matrix m n α) :
                      Matrix.vecMul 1 A = fun (j : n) => i : m, A i j
                      @[simp]
                      theorem Matrix.one_mulVec {m : Type u_2} {α : Type v} [NonAssocSemiring α] [Fintype m] [DecidableEq m] (v : mα) :
                      @[simp]
                      theorem Matrix.vecMul_one {m : Type u_2} {α : Type v} [NonAssocSemiring α] [Fintype m] [DecidableEq m] (v : mα) :
                      @[simp]
                      theorem Matrix.diagonal_const_mulVec {m : Type u_2} {α : Type v} [NonAssocSemiring α] [Fintype m] [DecidableEq m] (x : α) (v : mα) :
                      (Matrix.diagonal fun (x_1 : m) => x).mulVec v = x v
                      @[simp]
                      theorem Matrix.vecMul_diagonal_const {m : Type u_2} {α : Type v} [NonAssocSemiring α] [Fintype m] [DecidableEq m] (x : α) (v : mα) :
                      Matrix.vecMul v (Matrix.diagonal fun (x_1 : m) => x) = MulOpposite.op x v
                      @[simp]
                      theorem Matrix.natCast_mulVec {m : Type u_2} {α : Type v} [NonAssocSemiring α] [Fintype m] [DecidableEq m] (x : ) (v : mα) :
                      (↑x).mulVec v = x v
                      @[simp]
                      theorem Matrix.vecMul_natCast {m : Type u_2} {α : Type v} [NonAssocSemiring α] [Fintype m] [DecidableEq m] (x : ) (v : mα) :
                      @[simp]
                      theorem Matrix.ofNat_mulVec {m : Type u_2} {α : Type v} [NonAssocSemiring α] [Fintype m] [DecidableEq m] (x : ) [x.AtLeastTwo] (v : mα) :
                      @[simp]
                      theorem Matrix.vecMul_ofNat {m : Type u_2} {α : Type v} [NonAssocSemiring α] [Fintype m] [DecidableEq m] (x : ) [x.AtLeastTwo] (v : mα) :
                      theorem Matrix.neg_vecMul {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocRing α] [Fintype m] (v : mα) (A : Matrix m n α) :
                      theorem Matrix.vecMul_neg {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocRing α] [Fintype m] (v : mα) (A : Matrix m n α) :
                      theorem Matrix.neg_vecMul_neg {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocRing α] [Fintype m] (v : mα) (A : Matrix m n α) :
                      theorem Matrix.neg_mulVec {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocRing α] [Fintype n] (v : nα) (A : Matrix m n α) :
                      (-A).mulVec v = -A.mulVec v
                      theorem Matrix.mulVec_neg {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocRing α] [Fintype n] (v : nα) (A : Matrix m n α) :
                      A.mulVec (-v) = -A.mulVec v
                      theorem Matrix.neg_mulVec_neg {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocRing α] [Fintype n] (v : nα) (A : Matrix m n α) :
                      (-A).mulVec (-v) = A.mulVec v
                      theorem Matrix.mulVec_sub {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocRing α] [Fintype n] (A : Matrix m n α) (x y : nα) :
                      A.mulVec (x - y) = A.mulVec x - A.mulVec y
                      theorem Matrix.sub_mulVec {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocRing α] [Fintype n] (A B : Matrix m n α) (x : nα) :
                      (A - B).mulVec x = A.mulVec x - B.mulVec x
                      theorem Matrix.vecMul_sub {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocRing α] [Fintype m] (A B : Matrix m n α) (x : mα) :
                      theorem Matrix.sub_vecMul {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocRing α] [Fintype m] (A : Matrix m n α) (x y : mα) :
                      theorem Matrix.mulVec_transpose {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalCommSemiring α] [Fintype m] (A : Matrix m n α) (x : mα) :
                      A.transpose.mulVec x = Matrix.vecMul x A
                      theorem Matrix.vecMul_transpose {m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalCommSemiring α] [Fintype n] (A : Matrix m n α) (x : nα) :
                      Matrix.vecMul x A.transpose = A.mulVec x
                      theorem Matrix.mulVec_vecMul {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [NonUnitalCommSemiring α] [Fintype n] [Fintype o] (A : Matrix m n α) (B : Matrix o n α) (x : oα) :
                      A.mulVec (Matrix.vecMul x B) = (A * B.transpose).mulVec x
                      theorem Matrix.vecMul_mulVec {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [NonUnitalCommSemiring α] [Fintype m] [Fintype n] (A : Matrix m n α) (B : Matrix m o α) (x : nα) :
                      Matrix.vecMul (A.mulVec x) B = Matrix.vecMul x (A.transpose * B)
                      theorem Matrix.mulVec_smul_assoc {m : Type u_2} {n : Type u_3} {α : Type v} [CommSemiring α] [Fintype n] (A : Matrix m n α) (b : nα) (a : α) :
                      A.mulVec (a b) = a A.mulVec b
                      @[simp]
                      theorem Matrix.intCast_mulVec {m : Type u_2} {α : Type v} [NonAssocRing α] [Fintype m] [DecidableEq m] (x : ) (v : mα) :
                      (↑x).mulVec v = x v
                      @[simp]
                      theorem Matrix.vecMul_intCast {m : Type u_2} {α : Type v} [NonAssocRing α] [Fintype m] [DecidableEq m] (x : ) (v : mα) :
                      @[simp]
                      theorem Matrix.transpose_mul {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type v} [AddCommMonoid α] [CommSemigroup α] [Fintype n] (M : Matrix m n α) (N : Matrix n l α) :
                      (M * N).transpose = N.transpose * M.transpose
                      theorem Matrix.submatrix_mul {l : Type u_1} {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [Fintype n] [Fintype o] [Mul α] [AddCommMonoid α] {p : Type u_10} {q : Type u_11} (M : Matrix m n α) (N : Matrix n p α) (e₁ : lm) (e₂ : on) (e₃ : qp) (he₂ : Function.Bijective e₂) :
                      (M * N).submatrix e₁ e₃ = M.submatrix e₁ e₂ * N.submatrix e₂ e₃

                      simp lemmas for Matrix.submatrixs interaction with Matrix.diagonal, 1, and Matrix.mul for when the mappings are bundled.

                      @[simp]
                      theorem Matrix.submatrix_mul_equiv {l : Type u_1} {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [Fintype n] [Fintype o] [AddCommMonoid α] [Mul α] {p : Type u_10} {q : Type u_11} (M : Matrix m n α) (N : Matrix n p α) (e₁ : lm) (e₂ : o n) (e₃ : qp) :
                      M.submatrix e₁ e₂ * N.submatrix (⇑e₂) e₃ = (M * N).submatrix e₁ e₃
                      theorem Matrix.submatrix_mulVec_equiv {l : Type u_1} {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [Fintype n] [Fintype o] [NonUnitalNonAssocSemiring α] (M : Matrix m n α) (v : oα) (e₁ : lm) (e₂ : o n) :
                      (M.submatrix e₁ e₂).mulVec v = M.mulVec (v e₂.symm) e₁
                      @[simp]
                      theorem Matrix.submatrix_id_mul_left {l : Type u_1} {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [Fintype n] [Fintype o] [Mul α] [AddCommMonoid α] {p : Type u_10} (M : Matrix m n α) (N : Matrix o p α) (e₁ : lm) (e₂ : n o) :
                      M.submatrix e₁ id * N.submatrix (⇑e₂) id = M.submatrix e₁ e₂.symm * N
                      @[simp]
                      theorem Matrix.submatrix_id_mul_right {l : Type u_1} {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [Fintype n] [Fintype o] [Mul α] [AddCommMonoid α] {p : Type u_10} (M : Matrix m n α) (N : Matrix o p α) (e₁ : lp) (e₂ : o n) :
                      M.submatrix id e₂ * N.submatrix id e₁ = M * N.submatrix (⇑e₂.symm) e₁
                      theorem Matrix.submatrix_vecMul_equiv {l : Type u_1} {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [Fintype l] [Fintype m] [NonUnitalNonAssocSemiring α] (M : Matrix m n α) (v : lα) (e₁ : l m) (e₂ : on) :
                      Matrix.vecMul v (M.submatrix (⇑e₁) e₂) = Matrix.vecMul (v e₁.symm) M e₂
                      theorem Matrix.mul_submatrix_one {l : Type u_1} {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [Fintype n] [Finite o] [NonAssocSemiring α] [DecidableEq o] (e₁ : n o) (e₂ : lo) (M : Matrix m n α) :
                      M * Matrix.submatrix 1 (⇑e₁) e₂ = M.submatrix id (e₁.symm e₂)
                      theorem Matrix.one_submatrix_mul {l : Type u_1} {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} [Fintype m] [Finite o] [NonAssocSemiring α] [DecidableEq o] (e₁ : lo) (e₂ : m o) (M : Matrix m n α) :
                      Matrix.submatrix 1 e₁ e₂ * M = M.submatrix (e₂.symm e₁) id
                      theorem Matrix.submatrix_mul_transpose_submatrix {m : Type u_2} {n : Type u_3} {α : Type v} [Fintype m] [Fintype n] [AddCommMonoid α] [Mul α] (e : m n) (M : Matrix m n α) :
                      M.submatrix id e * M.transpose.submatrix (⇑e) id = M * M.transpose
                      theorem RingHom.map_matrix_mul {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type v} {β : Type w} [Fintype n] [NonAssocSemiring α] [NonAssocSemiring β] (M : Matrix m n α) (N : Matrix n o α) (i : m) (j : o) (f : α →+* β) :
                      f ((M * N) i j) = (M.map f * N.map f) i j
                      theorem RingHom.map_dotProduct {n : Type u_3} {R : Type u_7} {S : Type u_8} [Fintype n] [NonAssocSemiring R] [NonAssocSemiring S] (f : R →+* S) (v w : nR) :
                      f (Matrix.dotProduct v w) = Matrix.dotProduct (f v) (f w)
                      theorem RingHom.map_vecMul {m : Type u_2} {n : Type u_3} {R : Type u_7} {S : Type u_8} [Fintype n] [NonAssocSemiring R] [NonAssocSemiring S] (f : R →+* S) (M : Matrix n m R) (v : nR) (i : m) :
                      f (Matrix.vecMul v M i) = Matrix.vecMul (f v) (M.map f) i
                      theorem RingHom.map_mulVec {m : Type u_2} {n : Type u_3} {R : Type u_7} {S : Type u_8} [Fintype n] [NonAssocSemiring R] [NonAssocSemiring S] (f : R →+* S) (M : Matrix m n R) (v : nR) (i : m) :
                      f (M.mulVec v i) = (M.map f).mulVec (f v) i