HepLean Documentation

Mathlib.RingTheory.IntegralClosure.Algebra.Basic

Integral closure of a subring. #

Let A be an R-algebra. We prove that integral elements form a sub-R-algebra of A.

Main definitions #

Let R be a CommRing and let A be an R-algebra.

theorem Subalgebra.isIntegral_iff {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (S : Subalgebra R A) :
Algebra.IsIntegral R S xS, IsIntegral R x
theorem Algebra.IsIntegral.of_injective {R : Type u_1} [CommRing R] {A : Type u_5} {B : Type u_6} [Ring A] [Ring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) (hf : Function.Injective f) [Algebra.IsIntegral R B] :
theorem AlgEquiv.isIntegral_iff {R : Type u_1} [CommRing R] {A : Type u_5} {B : Type u_6} [Ring A] [Ring B] [Algebra R A] [Algebra R B] (e : A ≃ₐ[R] B) :
instance Module.End.isIntegral {R : Type u_1} [CommRing R] {M : Type u_5} [AddCommGroup M] [Module R M] [Module.Finite R M] :
Equations
  • =
theorem IsIntegral.of_finite (R : Type u_1) {B : Type u_3} [CommRing R] [Ring B] [Algebra R B] [Module.Finite R B] (x : B) :
theorem isIntegral_of_noetherian {R : Type u_1} {B : Type u_3} [CommRing R] [Ring B] [Algebra R B] :
IsNoetherian R B∀ (x : B), IsIntegral R x
instance Algebra.IsIntegral.of_finite (R : Type u_1) (B : Type u_3) [CommRing R] [Ring B] [Algebra R B] [Module.Finite R B] :
Equations
  • =
theorem IsIntegral.of_mem_of_fg {R : Type u_1} {B : Type u_3} [CommRing R] [Ring B] [Algebra R B] (S : Subalgebra R B) (HS : (Subalgebra.toSubmodule S).FG) (x : B) (hx : x S) :

If S is a sub-R-algebra of A and S is finitely-generated as an R-module, then all elements of S are integral over R.

theorem isIntegral_of_submodule_noetherian {R : Type u_1} {B : Type u_3} [CommRing R] [Ring B] [Algebra R B] (S : Subalgebra R B) (H : IsNoetherian R (Subalgebra.toSubmodule S)) (x : B) (hx : x S) :
theorem isIntegral_of_smul_mem_submodule {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] {M : Type u_5} [AddCommGroup M] [Module R M] [Module A M] [IsScalarTower R A M] [NoZeroSMulDivisors A M] (N : Submodule R M) (hN : N ) (hN' : N.FG) (x : A) (hx : nN, x n N) :

Suppose A is an R-algebra, M is an A-module such that a • m ≠ 0 for all non-zero a and m. If x : A fixes a nontrivial f.g. R-submodule N of M, then x is R-integral.

theorem RingHom.Finite.to_isIntegral {R : Type u_1} {S : Type u_4} [CommRing R] [CommRing S] {f : R →+* S} (h : f.Finite) :
f.IsIntegral
theorem RingHom.IsIntegral.of_finite {R : Type u_1} {S : Type u_4} [CommRing R] [CommRing S] {f : R →+* S} (h : f.Finite) :
f.IsIntegral

Alias of RingHom.Finite.to_isIntegral.

theorem RingHom.IsIntegralElem.of_mem_closure {R : Type u_1} {S : Type u_4} [CommRing R] [CommRing S] (f : R →+* S) {x : S} {y : S} {z : S} (hx : f.IsIntegralElem x) (hy : f.IsIntegralElem y) (hz : z Subring.closure {x, y}) :
f.IsIntegralElem z
theorem IsIntegral.of_mem_closure {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] {x : A} {y : A} {z : A} (hx : IsIntegral R x) (hy : IsIntegral R y) (hz : z Subring.closure {x, y}) :
theorem RingHom.IsIntegralElem.add {R : Type u_1} {S : Type u_4} [CommRing R] [CommRing S] (f : R →+* S) {x : S} {y : S} (hx : f.IsIntegralElem x) (hy : f.IsIntegralElem y) :
f.IsIntegralElem (x + y)
theorem IsIntegral.add {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] {x : A} {y : A} (hx : IsIntegral R x) (hy : IsIntegral R y) :
IsIntegral R (x + y)
theorem RingHom.IsIntegralElem.neg {R : Type u_1} {S : Type u_4} [CommRing R] [CommRing S] (f : R →+* S) {x : S} (hx : f.IsIntegralElem x) :
f.IsIntegralElem (-x)
theorem RingHom.IsIntegralElem.of_neg {R : Type u_1} {S : Type u_4} [CommRing R] [CommRing S] (f : R →+* S) {x : S} (h : f.IsIntegralElem (-x)) :
f.IsIntegralElem x
@[simp]
theorem RingHom.IsIntegralElem.neg_iff {R : Type u_1} {S : Type u_4} [CommRing R] [CommRing S] (f : R →+* S) {x : S} :
f.IsIntegralElem (-x) f.IsIntegralElem x
theorem IsIntegral.neg {R : Type u_1} {B : Type u_3} [CommRing R] [Ring B] [Algebra R B] {x : B} (hx : IsIntegral R x) :
theorem IsIntegral.of_neg {R : Type u_1} {B : Type u_3} [CommRing R] [Ring B] [Algebra R B] {x : B} (hx : IsIntegral R (-x)) :
@[simp]
theorem IsIntegral.neg_iff {R : Type u_1} {B : Type u_3} [CommRing R] [Ring B] [Algebra R B] {x : B} :
theorem RingHom.IsIntegralElem.sub {R : Type u_1} {S : Type u_4} [CommRing R] [CommRing S] (f : R →+* S) {x : S} {y : S} (hx : f.IsIntegralElem x) (hy : f.IsIntegralElem y) :
f.IsIntegralElem (x - y)
theorem IsIntegral.sub {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] {x : A} {y : A} (hx : IsIntegral R x) (hy : IsIntegral R y) :
IsIntegral R (x - y)
theorem RingHom.IsIntegralElem.mul {R : Type u_1} {S : Type u_4} [CommRing R] [CommRing S] (f : R →+* S) {x : S} {y : S} (hx : f.IsIntegralElem x) (hy : f.IsIntegralElem y) :
f.IsIntegralElem (x * y)
theorem IsIntegral.mul {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] {x : A} {y : A} (hx : IsIntegral R x) (hy : IsIntegral R y) :
IsIntegral R (x * y)
theorem IsIntegral.smul {B : Type u_3} {S : Type u_4} [Ring B] [CommRing S] {R : Type u_5} [CommSemiring R] [Algebra R B] [Algebra S B] [Algebra R S] [IsScalarTower R S B] {x : B} (r : R) (hx : IsIntegral S x) :
IsIntegral S (r x)
def integralClosure (R : Type u_1) (A : Type u_2) [CommRing R] [CommRing A] [Algebra R A] :

The integral closure of R in an R-algebra A.

Equations
  • integralClosure R A = { carrier := {r : A | IsIntegral R r}, mul_mem' := , one_mem' := , add_mem' := , zero_mem' := , algebraMap_mem' := }
Instances For
    theorem mem_integralClosure_iff (R : Type u_1) (A : Type u_2) [CommRing R] [CommRing A] [Algebra R A] {a : A} :