HepLean Documentation

HepLean.Lorentz.PauliMatrices.AsTensor

Pauli matrices #

The tensor σ^μ^a^{dot a} based on the Pauli-matrices as an element of complexContr ⊗ leftHanded ⊗ rightHanded.

Equations
Instances For
    theorem PauliMatrix.asTensor_expand_complexContrBasis :
    PauliMatrix.asTensor = Lorentz.complexContrBasis (Sum.inl 0) ⊗ₜ[] Fermion.leftRightToMatrix.symm (PauliMatrix.σSA (Sum.inl 0)) + Lorentz.complexContrBasis (Sum.inr 0) ⊗ₜ[] Fermion.leftRightToMatrix.symm (PauliMatrix.σSA (Sum.inr 0)) + Lorentz.complexContrBasis (Sum.inr 1) ⊗ₜ[] Fermion.leftRightToMatrix.symm (PauliMatrix.σSA (Sum.inr 1)) + Lorentz.complexContrBasis (Sum.inr 2) ⊗ₜ[] Fermion.leftRightToMatrix.symm (PauliMatrix.σSA (Sum.inr 2))

    The expansion of asTensor into complexContrBasis basis vectors .

    theorem PauliMatrix.leftRightToMatrix_σSA_inl_0_expand :
    Fermion.leftRightToMatrix.symm (PauliMatrix.σSA (Sum.inl 0)) = Fermion.leftBasis 0 ⊗ₜ[] Fermion.rightBasis 0 + Fermion.leftBasis 1 ⊗ₜ[] Fermion.rightBasis 1

    The expansion of the pauli matrix σ₀ in terms of a basis of tensor product vectors.

    theorem PauliMatrix.leftRightToMatrix_σSA_inr_0_expand :
    Fermion.leftRightToMatrix.symm (PauliMatrix.σSA (Sum.inr 0)) = Fermion.leftBasis 0 ⊗ₜ[] Fermion.rightBasis 1 + Fermion.leftBasis 1 ⊗ₜ[] Fermion.rightBasis 0

    The expansion of the pauli matrix σ₁ in terms of a basis of tensor product vectors.

    theorem PauliMatrix.leftRightToMatrix_σSA_inr_1_expand :
    Fermion.leftRightToMatrix.symm (PauliMatrix.σSA (Sum.inr 1)) = -(Complex.I Fermion.leftBasis 0 ⊗ₜ[] Fermion.rightBasis 1) + Complex.I Fermion.leftBasis 1 ⊗ₜ[] Fermion.rightBasis 0

    The expansion of the pauli matrix σ₂ in terms of a basis of tensor product vectors.

    theorem PauliMatrix.leftRightToMatrix_σSA_inr_2_expand :
    Fermion.leftRightToMatrix.symm (PauliMatrix.σSA (Sum.inr 2)) = Fermion.leftBasis 0 ⊗ₜ[] Fermion.rightBasis 0 - Fermion.leftBasis 1 ⊗ₜ[] Fermion.rightBasis 1

    The expansion of the pauli matrix σ₃ in terms of a basis of tensor product vectors.

    theorem PauliMatrix.asTensor_expand :
    PauliMatrix.asTensor = Lorentz.complexContrBasis (Sum.inl 0) ⊗ₜ[] Fermion.leftBasis 0 ⊗ₜ[] Fermion.rightBasis 0 + Lorentz.complexContrBasis (Sum.inl 0) ⊗ₜ[] Fermion.leftBasis 1 ⊗ₜ[] Fermion.rightBasis 1 + Lorentz.complexContrBasis (Sum.inr 0) ⊗ₜ[] Fermion.leftBasis 0 ⊗ₜ[] Fermion.rightBasis 1 + Lorentz.complexContrBasis (Sum.inr 0) ⊗ₜ[] Fermion.leftBasis 1 ⊗ₜ[] Fermion.rightBasis 0 - Complex.I Lorentz.complexContrBasis (Sum.inr 1) ⊗ₜ[] Fermion.leftBasis 0 ⊗ₜ[] Fermion.rightBasis 1 + Complex.I Lorentz.complexContrBasis (Sum.inr 1) ⊗ₜ[] Fermion.leftBasis 1 ⊗ₜ[] Fermion.rightBasis 0 + Lorentz.complexContrBasis (Sum.inr 2) ⊗ₜ[] Fermion.leftBasis 0 ⊗ₜ[] Fermion.rightBasis 0 - Lorentz.complexContrBasis (Sum.inr 2) ⊗ₜ[] Fermion.leftBasis 1 ⊗ₜ[] Fermion.rightBasis 1

    The expansion of asTensor into complexContrBasis basis of tensor product vectors.

    The tensor σ^μ^a^{dot a} based on the Pauli-matrices as a morphism, 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ complexContr ⊗ leftHanded ⊗ rightHanded manifesting the invariance under the SL(2,ℂ) action.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      The map 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ complexContr ⊗ leftHanded ⊗ rightHanded corresponding to Pauli matrices, when evaluated on 1 corresponds to the tensor PauliMatrix.asTensor.